

Peer-to-Peer Networks 02: Napster & Gnutella

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

JRG

N.

- Shawn (Napster) Fanning
 - published 1999 his beta version of the now legendary Napster P2P network
 - File-sharing-System
 - Used as mp3 distribution system

- In autumn 1999 Napster has been called download of the year
- Copyright infringement lawsuit of the music industry in June 2000
- End of 2000: cooperation deal
 - between Fanning and Bertelsmann Ecommerce
- Since then Napster is a commercial file-sharing platform

How Did Napster Work?

- Client-Server
- Server stores
 - Index with meta-data
 - file name, date, etc
 - table of connections of participating clients
 - table of all files of participants
- Query
 - client queries file name
 - server looks up corresponding clients
 - server replies the owner of the file
 - querying client downloads the file from the file owning client

A Discussion of Napster Freiburg

- Advantages
 - Napster is simple
 - Files can be found fast and effective
- Disadvantages
 - Central structure eases censorship, hostile attacks and vulnerability against technical problems
 - e.g. denial of service (DOS) attack
 - Napster does not scale
 - i.e. increasing number of participants implies a decline in performance
 - bandwidth and memory of the server is limited
- Conclusion
 - Napster is not an acceptable P2P network solution
 - Except the download part Napster is not a real P2P network

- Gnutella
 - was released in March 2000 by Justin Frankel and Tom Pepper from Nullsoft
 - Since 1999 Nullsoft is owned by AOL
- File-Sharing system
 - Same goal as Napster
 - But without any central structures

- Neighbor lists
 - Gnutella connects directly with other clients
 - the client software includes a list of usually online clients
 - the clients checks these clients until an active node has been found
- an active client publishes its neighbor list
 - the query (ping) is forwarded to other nodes
 - the answer (pong) is sent back
 - neighbor lists are extended and stored
 - the number of the forwarding is limited (typically: five)

Protokoll

- Ping
 - participants query for neighbors
 - are forwarded according for TTL steps (time to live)
- Pong
 - answers Ping
 - is forwarded backward on the query path
 - reports IP and port adress (socket pair)
 - number and size of available files

Gnutella — Connecting CoNe Freiburg

Gnutella — Graph Structure CoNe Freiburg

A Gnutella — Graph Structure Freiburg

- File Query
 - are sent to all neighbors
 - Neighbors forward to all neighbors
 - until the maximum hop distance has been reached
 - TTL-entry (time to live)
- Protocol
 - Query
 - for file for at most TTL hops
 - Query-hits
 - answers on the path backwards
- If file has been found, then initiate direct download

Gnutella — Query CoNe Freiburg

- Advantages
 - distributed network structure
 - scalable network
- Disadvantages
 - bounded breadth depth search leads to implizit network partition
 - this reduces success probability
 - long paths, slow latency
- Suggested improvements
 - random walks instead broadcasting
 - passive replication of index information

FastTrack & Gnutella2

- Hybrid Structure
 - high bandwidth node are elected as P2P-servers, aka. super-nodes
 - super-nodes are connected using the original Gnutella protocol
 - client nodes are connected only to super-nodes
- Used in
 - FastTrack
 - Gnutella 2
- Advantages
 - improved scalabilty
 - smaller latency
- Disadvantages
 - still unreliable and slow
 - peers decline to serve as super-nodes

CoNe Freiburg

Degree Distribution in Gnutella

- Modeling Large-scale Peer-to-Peer Networks and a Case Study of Gnutella
 - Mihajlo A. Jovanovic, Master Thesis, 2001
- The number of neighbors is distributed according a power law (Pareto) distribution
 - log(#peers with degree d) = c k log d
 - #peers with degree $d = C/d^k$

Pareto-Distribution Examples

- Pareto 1897: Distribution of wealth in the population
- Yule 1944: frequency of words in texts
- Zipf 1949: size of towns
- Iength of molecule chains
- file length of Unix-system files

■ Discreet Pareto-Distribution for $x \in \{1, 2, 3, ...\}$

$$\mathbf{P}[X=x] = \frac{1}{\zeta(\alpha) \cdot x^{\alpha}}$$

- with constant factor

$$\zeta(lpha) = \sum_{i=1}^{\infty} \frac{1}{i^{lpha}}$$

- (also known as Riemann's Zeta-function)
- Heavy tail property
 - not all moments E[X^k] exist
 - the expectation exists if and only if (iff) α >2
 - variance and E[X²] exist iff α >3
 - E[X^k] exists iff α>k+1
- Density function of the continuous function for x>x₀

$$f(x) = \frac{\alpha - 1}{x_0} \left(\frac{x_0}{x}\right)^{\alpha}$$

8.75

are described by a power law (Pareto) distribution

- Experiments of
 - Kumar et al 97: 40 millions Webpages
 - Barabasi et al 99: Domain *.nd.edu + Web-pages in distance 3
 - Broder et al 00: 204 millions web pages (Scan Mai und Okt. 1999)

6

UNI FREIBURG

A Connectivity of Pareto Graphs Freiburg

- William Aiello, Fan Chung, Linyuan Lu, A Random Graph Model for Massive Graphs, STOC 2000
- Undirected graph with n nodes where
 - the probability of k neighbors for a node is p_k
 - where $p_k = c k^{-\tau}$ for some normalizing factor c
- Theorem
 - For sufficient large n such Pareto-Graphs with exponent T we observe
 - for $\tau < 1$ the graph is connected with probability 1-o(1)
 - for $\tau > 1$ the graph is nont connected with probability 1-o(1)
 - for $1 < \tau < 2$ there is a connected component of size $\Theta(n)$
 - for 2< τ < 3.4785 there is only one connected component of size Θ(n) and all others have size O(log n)
 - for τ >3.4785: there is no large connected component of size Θ(n) with probability 1-o(1)
 - For τ >4: no large connected components which size can be described by a power law (Pareto) distribution

- George Kinsley Zipf claimed
 - that the frequency of the n most frequent word f(n)
 - satisfies the equation n f(n) = c.
- Zipf probability distribution for $x \in \{1, 2, 3, ...\}$

$$\mathbf{P}[X=x] = \frac{c}{x}$$

- with constant factor c only defined for connstant sized sets, since

$$\ln n \le \sum_{i=1}^n \frac{1}{i} \le 1 + \ln n$$

- is unbounded
- Zipf distribution relate to the rank
 - The Zipf exponent α may be larger than 1, i.e. $f(n) = c/n^{\alpha}$
- Pareto distribution realte the absolute size, e.g. the number of inhabitants

Size of towns Scaling Laws and Urban Distributions, Denise Pumain, 2003

Figure 1 The hierarchical differentiation in urban systems: Rank-size distribution of French agglomerations (1831-1999)

Figure 1. Fitted power law distributions of the number of site a) pages, b) visitors, c) out links, and d) in links, measured in 1997.

Small World Phenomenon

- Milgram's experiment 1967
 - 60 random chosen participants in Wichita, Kansas had to send a packet to an unknown address
 - They were only allowed to send the packet to friends
 - likewise the friends
- The majority of packets arrived within six hops
- Small-World-Networks
 - are networks with Pareto distributed node degree
 - with small diameter (i.e. O(log^c n))
 - and relatively many cliques
- Small-World-Networks
 - Internet, World-Wide-Web, nervous systems, social networks

How do Small World Networks Come into Existence?

- Emergence of scaling in random networks, Albert-Laszlo Barabasi, Reka Albert, 1999
- Preferential Attachment-Model (Barabasi-Albert):
 - Starting from a small starting graph successively nodes are inserted with m edges each (m is a parameter)
 - The probability to choose an existing node as a neighbor is proportional to the current degree of a node
- This leads to a Pareto network with exponent 2,9 ± 0,1
 - however cliques are very seldom
- Watts-Strogatz (1998)
 - Start with a ring and connections to the m nearest neighbors
 - With probability p every edge is replaced with a random edge
 - Allows continuous transition from an ordered graph to chaos
- Extended by Kleinberg (1999) for the theoretical verification of Milgram's experiment

Peer-to-Peer Networks 02: Napster & Gnutella

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

JRG

N.