Peer-to-Peer Networks
03 CAN (Content Addressable Network)

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg
Index entries are mapped to the square $[0,1]^2$
- using two hash functions to the real numbers
- according to the search key

Assumption:
- hash functions behave like a random mapping
Index entries are mapped to the square $[0,1]^2$
- using two hash functions to the real numbers
- according to the search key

Assumption:
- hash functions behave like a random mapping

Literature
First Peer in CAN

- In the beginning there is one peer owning the whole square
- All data is assigned to the (green) peer
CAN: The 2nd Peer Arrives

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
The new peer chooses a random point in the square - or uses a hash function applied to the peers Internet address.

The peer looks up the owner of the point - and contacts the owner.

The original owner divides his rectangle in the middle and shares the data with the new peer.
3rd Peer
CAN: 3rd Peer
CAN: 4th Peer
CAN: 4th Peer Added
CAN: 5th Peer
CAN: All Peers Added
On the Size of a Peer's Area

- R(p): rectangle of peer p
- A(p): area of the R(p)
- n: number of peers
- area of playground square: 1

Lemma - For all peers we have

\[E[A(p)] = \frac{1}{n} \]

Lemma - Let \(P_{R,n} \) denote the probability that no peers falls into an area R. Then we have

\[P_{R,n} \leq e^{-nVol(R)} \]
Lemma

- Let $P_{R,n}$ denote the probability that no peers falls into an area R. Then

$$P_{R,n} \leq e^{-n \text{Vol}(R)}$$

Proof

- Let $x = \text{Vol}(R)$
- The probability that a peer does not fall into R is $1 - x$
- The probability that n peers do not fall into R is $(1 - x)^n$
- So, the probability is bounded by

$$m > 1 : \left(1 - \frac{1}{m}\right)^m \leq \frac{1}{e}$$

- because

$$(1 - x)^n = \left((1 - x)^\frac{1}{x}\right)^{nx} \leq e^{-nx}$$
How Fair Are the Data Balanced

- **Lemma**
 - With probability n^{-c} a rectangle of size $(c \ln n)/n$ is not further divided.

- **Proof**
 - Let $P_{R,n}$ denote the probability that no peers falls into an area R. Then we have
 \[P_{R,n} \leq e^{-n \text{Vol}(R)} \]

- Every peer receives at most $c (\ln n) m/n$ elements
 - if all m elements are stored equally distributed over the area

- While the average peer stores m/n elements
 \[P_{R,n} \leq e^{-n \frac{c \ln n}{n}} = e^{-c \ln n} = n^{-c} \]

- So, the number of data stored on a peer is bounded by $c (\ln n)$ times the average amount.
Network Structure of CAN

- Let d be the dimension of the square, cube, hyper-cube
 - 1: line
 - 2: square
 - 3: cube
 - 4: ...

- Peers connect
 - if the areas of peers share a $(d-1)$-dimensional area
 - e.g. for $d=2$ if the rectangles touch by more than a point
Lookup in CAN

- Compute the position of the index using the hash function on the key value
- Forward lookup to the neighbored peer which is closer to the index
- Expected number of hops for CAN in d dimensions:
 - $O(n^{1/d})$
- Average degree of a node
 - $O(d)$
Insertions in CAN = Random Tree

- **Random Tree**
 - new leaves are inserted randomly
 - if node is internal then flip coin to forward to left or right sub-tree
 - if node is leaf then insert two leafs to this node

- **Depth of Tree**
 - in the expectation: $O(\log n)$
 - Depth $O(\log n)$ with high probability, i.e. $1-n^{-c}$

- **Observation**
 - CAN inserts new peers like leafs in a random tree
Leaving Peers in CAN

- If a peer leaves
 - he does not announce it

- Neighbors continue testing on the neighborhood
 - to find out whether peer has left
 - the first neighbor who finds a missing neighbor takes over the area of the missing peer

- Peers can be responsible for many rectangles

- Repeated insertions and deletions of peers lead to fragmentation
Defragmentation — The Simple Case

- To heal fragmented areas
 - from time to to time areas are freshly assigned
- Every peer with at least two zones
 - erases smallest zone
 - finds replacement peer for this zone
- 1st case: neighboring zone is undivided
 - both peers are leafs in the random tree
 - transfer zone to the neighbor
Defragmentation — The Difficult Case

- Every peer with at least two zones
 - erases smallest zone
 - finds replacement peer for this zone

- 2nd case: neighboring zone is further divided
 - Perform DFS (depth first search) in neighbor tree until two neighbored leafs are found
 - Transfer the zone to one leaf which gives up his zone
 - Choose the other leaf to receive the latter zone
Improvements for CAN

- More dimensions
- Multiples realities
- Distance metric for routing
- Overloading of zones
- Multiple hashing
- Topology adapted network construction
- Fairer partitioning
- Caching, replication and hot-spot management
Higher Dimensions

- Let d be the dimension of the square, cube, hyper-cube
 - 1: line
 - 2: square
 - 3: cube
 - 4: ...
- The expected path length is $O(n^{1/d})$
- Average number of neighbors $O(d)$
More Realities

- Build simultaneously r CANs with the same peers
- Each CAN is called a *reality*
- For lookup
 - greedily jump between realities
 - choose reality with the closest distance to the target
- Advantages
 - robuster network
 - faster search
More Realities

- Advantages
 - robuster
 - shorter paths
Realities vs. Dimensions

- Dimensionens reduce the lookup path length more efficiently
- Realities produce more robust networks

![Graph showing the relationship between number of hops and number of neighbors for different dimensions and realities. The graph includes points for increasing dimensions and increasing realities, with a line connecting these points.]
Peer-to-Peer Networks
03 CAN (Content Addressable Network)

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg