
Peer-to-Peer Networks
03 CAN (Content Addressable Network)

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

CAN Playground

! Index entries
are mapped
to the square
[0,1]2

- using two
hash functions
to the real
numbers

- according to
the search
key

! Assumption:
- hash functions

behave a like
a random
mapping

2

CAN Index Entries

! Index entries are mapped to
the square [0,1]2
- using two hash functions to

the real numbers
- according to the search key

! Assumption:
- hash functions behave a

like a random mapping
! Literature

- Ratnasamy, S., Francis, P.,
Handley, M., Karp, R.,
Shenker, S.: A scalable
content-addressable network.
In: Computer Communication
Review. Volume 31., Dept. of
Elec. Eng. and Comp. Sci.,
University of California,
Berkeley (2001) 161–172

Dick
Karp

Mark
Handley

Sylvia
Ratnasamy

Paul Francis

Scott
Shenker

3

First Peer in CAN

! In the beginning
there is one peer
owning the whole
square

! All data is
assigned to the
(green) peer

4

CAN: The 2nd Peer Arrives

! The new peer
chooses a random
point in the square
- or uses a hash

function applied to
the peers Internet
address

! The peer looks up
the owner of the
point
- and contacts the

owner

5

CAN: 2nd Peer Has Settled Down

! The new peer
chooses a random
point in the square

- or uses a hash
function applied to the
peers Internet address

! The peer looks up
the owner of the
point

- and contacts the
owner

! The original owner
divides his rectangle
in the middle and
shares the data with
the new peer

6

3rd Peer

7

CAN: 3rd Peer

8

CAN: 4th Peer

9

CAN: 4th Peer Added

10

CAN: 5th Peer

11

CAN: All Peers Added

12

On the Size of a Peer‘s Area

! R(p): rectangle of
peer p

! A(p): area of the
R(p)

! n: number of peers
! area of playground

square: 1
! Lemma

- For all peers we
have

! Lemma
- Let PR,n denote the

probability that no
peers falls into an
area R. Then we
have

13

An Area Not being Hit

! Lemma
- Let PR,n denote the probability

that no peers falls into an area
R. Then  

! Proof
- Let x=Vol(R)
- The probability that a peer does

not fall into R is
- The probability that n peers do

not fall into R is
- So, the probability is bounded

by

- because

R

14

How Fair Are the Data Balanced

! Lemma
- With probability n

-c
 a rectangle of

size (c ln n)/n is not further divided

! Proof
- Let PR,n denote the probability that

no peers falls into an area R. Then
we have  
 

! Every peer receives at most  
c (ln n) m/n elements

- if all m elements are stored
equally distributed over the area

! While the average peer stores
m/n elements

! So, the number of data stored
on a peer is bounded by c (ln n)
times the average amount

15

PR,n � e�n c ln n
n = e�c ln n = n�c

Network Structure of CAN

! Let d be the dimension
of the square, cube,
hyper-cube
- 1: line
- 2: square
- 3: cube
- 4: ...

! Peers connect
- if the areas of peers

share a (d-1)-dimensional
area

- e.g. for d=2 if the
rectangles touch by more
than a point

16

Lookup in CAN

! Compute the position of
the index using the hash
function on the key value

! Forward lookup to the
neighbored peer which
is closer to the index

! Expected number of
hops for CAN in d
dimensions:
-

! Average degree of a
node
-

17

O(n1/d)

O(d)

Insertions in CAN = Random Tree

! Random Tree
- new leaves are inserted

randomly
- if node is internal then flip

coin to forward to left or
right sub-tree

- if node is leaf then insert
two leafs to this node

! Depth of Tree
- in the expectation: O(log

n)
- Depth O(log n) with high

probability, i.e. 1-n-c

! Observation
- CAN inserts new peers

like leafs in a random
tree

18

Leaving Peers in CAN

! If a peer leafs
- he does not announce it

! Neighbors continue testing on the
neighborhood

- to find out whether peer has left
- the first neighboir who finds a missing neighbor

takes over the area of the missing peer

! Peers can be responsible for many
rectangles

! Repeated insertions and deletions of
peers leed to fragmentation

19

Defragmentation — The Simple Case

! To heal fragmented areas
- from time to to time areas

are freshly assigned

! Every peer with at least
two zones
- erases smalles zone
- finds replacement peer for

this zone

! 1st case: neighboring
zone is undivided
- both peers are leafs in the

random tree
- transfer zone to the neighbor

20

Defragmentation — The Difficult Case

! Every peer with at least
two zones
- erases smalles zone
- finds replacement peer for

this zone
! 2nd case: neighboring

zone is further divided
- Perform DFS (depth first

search) in neighbor tree until
two neighbored leafs are
found

- Transfer the zone to one leaf
which gives up his zone

- Choose the other leaf to
receive the latter zone

21

 DFS

Improvements for CAN

! More dimensions
! Multiples realities
! Distance metric for routing
! Overloading of zones
! Multiple hasing
! Topology adapted network construction
! Fairer partitioning
! Caching, replication and hot-spot management

22

Higher Dimensions

! Let d be the
dimension of
the square,
cube, hyper-
cube

- 1: line
- 2: square
- 3: cube
- 4: ...

! The expected
path length is
O(n1/d)

! Average
number of
neighbors
O(d)

23

More Realities

! Build simultanously
r CANs with the
same peers

! Each CAN is called
a reality

! For lookup
- greedily jump

between realities
- choose reality with

the closest distance
to the target

! Advantanges
- robuster network
- faster search

24

More Realities

! Advantages
- robuster
- shorter paths

25

! Dimensionens
reduce the
lookup path
length more
effciently

! Realities
produce more
robust networks

26

Realities vs.
Dimensions

Peer-to-Peer Networks
03 CAN (Content Addressable Network)

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

