

Peer-to-Peer Networks

- **Christian Schindelhauer**
- **Fechnical Faculty**
- **Computer-Networks and Telematics**
- Jniversity of Freiburg

- Peter Druschel
 - Rice University, Houston, Texas
 - now head of Max-Planck-Institute for Computer Science, Saarbrücken/ Kaiserslautern
- Antony Rowstron
 - Microsoft Research, Cambridge, GB
- Developed in Cambridge (Microsoft Research)
- Pastry
 - Scalable, decentralized object location and routing for large scale peer-topeer-network
- PAST
 - A large-scale, persistent peer-to-peer storage utility
- Two names one P2P network
 - PAST is an application for Pastry enabling the full P2P data storage functionality
 - We concentrate on Pastry

iburg T' Plaxton, rajumaram, et.29 KIMA | Co Plaston - Routing" Pastry, lapostry

71P-rodes

PL >

- Each peer has a 128-bit ID: nodeID
- unique and uniformly distributed
- e.g. use cryptographic function applied to IP-address
- Routing
- Keys are matched to $\{0,1\}^{128}$
- According to a metric messages are distributed to the neighbor next to the target
- Routing table has
- $O(2^{b}(\log n)/b) + \ell$ entries
- n: number of peers
- - ℓ : configuration parameter
- b: word length
 - typical: b= 4 (base 16),
 - $\ell = 16$
 - message delivery is guaranteed as long as less than $\ell/2$ neighbored peers fail
- Inserting a peer and finding a key needs O((log n)/b) messages

- Nodeld presented in base 2^b
 - e.g. NodeID: 65A0BA13
- For each prefix p and letter x ∈ {0,..,2^b-1} → add an peer of form px* to the routing table of NodeID, e.g.
 - b=4, 2^b=16
 - 15 entries for 0*,1*, .. F*
 - 15 entries for 60*, 61*,... 6F*
 - ...
 - if no peer of the form exists, then the entry remains empty
- Choose next neighbor according to a distance metric
 - metric results from the RTT (round trip time)
- In addition choose ℓ neighbors
 - l/2 with next higher ID
 - l/2 with next lower ID

		6	2	4	5	<u> </u>	7	0	0		1		1	
0			3	4	5	6	7	8	9	a	b	C	d	e
x	x	x	x	x	x		x	x	x	x	<u>x</u>	<u>x</u>	<u>x</u>	X
6	6	6	6	6		6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	a	b	c	d	e
x	x	x	x	x		x	x	x	(x	x	x	x	x	x
6	6	6	6	6	6	6	6	6	6		6	6	6	
5	5	5	5	5	5	5	5	5	5		5	5	5	6 5
5 0	<i>3</i> <i>1</i>		1		5	<i>6</i>	7	8	9		b			
		2	3	4					-			C	d	e
x	x	x	x	x	x	x	x	x	x	-	x	<i>x</i>	<i>x</i>	X
6		6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e
x		\mathbf{x}	\boldsymbol{x}	\mathbf{x}	\mathbf{x}	x	\mathbf{x}	x	x	x	x	x	\mathbf{x}	x

N $\left(2^{5}\right)^{r}$ $\left(2^{5}\right)^{r}$ n^{c} 6.x (11 2 2 M $\begin{pmatrix} 2^{5} \end{pmatrix} \cdot \begin{pmatrix} 2^{5} \end{pmatrix} \cdots \begin{pmatrix} 2^{5} \end{pmatrix}$ 6.x 2 (10g~m).((+1) $\chi \geq \frac{\Lambda}{b} \cdot \left(lo_{j2} m \right) \cdot \left(c + 1 \right)$

- Example b=2
- **Routing Table**
- For each prefix p and letter x ∈ {0,..,2^b-1} add an peer of form px* to the routing table of NodelD
- In addition choose *l*
- neighors
- -l/2 with next higher ID
- -d/2 with next lower ID
- Observation
- The leaf-set alone can be used to find a target
- Theorem
- With high probability there are at most O(2^b (log n)/b) entries in

210

heorem

With high probability there are at most $O(2^{b} (\log n)/b)$ entries in each routing table

'roof

- The probability that a peer gets the same m-digit prefix is 2^{-bm}
- The probability that a m-digit prefix is

 $(1 - 2^{-bm})^n \le e^{-n/2^{bm}}$

0	1	2	3	4	5		7	8	9	a	b	c	d	e	f
x	x	x	x	x	x		x	x	x	x	x	x	x	x	x
	_	-	_												
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	a	b	C	d	e	f
x	x	x	x	x		x	x	x	x	x	x	x	x	x	x
		-	\sim												
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	c	d	e	f
x	x	x	x	x	x	x	x	x	x		x	x	x	x	x
			_											-	
6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e	f
x		x	x	x	x	x	x	x	x	x	x	x	x	x	x

For m=c (log n)/b we get

 $e^{-n/2^{bm}} < e^{-n/2^{c\log n}} < e^{-n/n^c}$

- With (extremely) high probability there is no peer with the same prefix of length $(1+\epsilon)(\log n)/b$
- Hence we have $(1+\epsilon)(\log n)/b$ rows with Oh 1 antring angle

$$\leq e^{-n^{c-1}}$$

yord - recop.

- New node x sends message to the node with the longest common prefix p
- receives
- routing table of z
- leaf set of z
- updates leaf-set
- informs informert l-leaf set
- informs peers in routing table
- with same prefix p (if $\ell/2 < 2^{b}$)
- Jumbor of messages for adding a peer
- -*L* messages to the leaf-set
- expected ($2^{b} \ell/2$) messages to node with common prefix
- one message to z with answer

- Inheriting the next neighbor routing table does not allows work perfectly
- Example
 - If no peer with 1* exists then all other peers have to point to the new node
 - Inserting 11
 - 03 knows from its routing table
 - 22,33
 - 00,01,02
 - 02 knows from the leaf-set
 - 01,02,20,21
- 11 cannot add all necessary links to the routing tables

necessary entries in leaf set

- Assume the entry R^{ij} is missing at peer D
 - j-th row and i-th column of the routing table
- This is noticed if message of a peer with such a prefix is received
- This may also happen if a peer leaves the network
- Contact peers in the same row
 - if they know a peer this address is copied
- If this fails then perform routing to the missing link

links of neighbors

- Compute the target ID using the hash function
- If the address is within the *l*-leaf set
 - the message is sent directly
 - or it discovers that the target is missing
- Else use the address in the routing table to forward the mesage
- If this fails take best fit from all addresses

<u>ℓ</u>-leafset

routing table

nodes in the vicinity of D (according to RTT)

key

nodeID of current peer

j-th row and i-th column of the routing table

numbering of the leaf set

i-th digit of key D

I(A): length of the larges

prefix of A and D (16) } (16)

(1) if $(L_{-||L|/2|} \le D \le L_{||L|/2|})$ { // D is within range of our leaf set \mathcal{O} (2)forward to L_i , s.th. $|D - L_i|$ is minimal; (3) (4)} else { (5)// use the routing table Let l = shl(D, A);(6) if $(R_l^{D_l} \neq null)$ { (7) forward to $R_l^{D_l}$; (8) } (9) (10)else { (11)// rare case forward to $T \in \underline{L} \cup R \cup M$, s.th. (12) $shl(T, D) \ge l$, (13)|T - D| < |A - D|(14)} (15)"majic

KII -Mop

- If the Routing-Table is correct
 - routing needs Q((log n)/b) messages
- As long as the leaf-set is correct
 - routing needs O(n/l) messages
 - unrealistic worst case since even damaged routing tables allow dramatic speedup
 - Routing does not use the real distances
 - M is used only if errors in the routing table occur
 - using locality improvements are possible
 - Thus, Pastry uses heuristics for improving the lookup time
 - these are applied to the last, most expensive, hops

Leaf-set peers are not near, e.g.

- New Zealand, California, India, ...
- TCP protocol measures latency
 - latencies (RTT) can define a metric
 - this forms the foundation for finding the nearest peers
- All methods of Pastry are based on heuristics
 - i.e. no rigorous (mathematical) proof of efficiency
- Assumption: metric is Euclidean

$$\frac{metric}{(A,B)} = \frac{\lambda(A,B)}{2}$$

1.
$$d(A, A) = 0$$

2. $d(A, B) = d(B, A)$
3. Tria de Prondu

(X,Y,Z)

Assumption

- When a peer is inserted the peers contacts a near peer
- All peers have optimized routing tables
- But:
 - The first contact is not necessary near according to the node-ID
- 1st step
 - Copy entries of the first row of the routing table of P
 - good approximation because of the triangle inequality (metric)

2nd step

- Contact fitting peer p' of p with the same first letter
- Again the entries are relatively close
- Repeat these steps until all entries

n the best case

- each entry in the routing table is optimal w.r.t. distance metric
- this does not lead to the shortest path
- here is hope for short bokup times
- with the length of the common prefix the latency metric grows exponentially
- the last hops are the most expensive ones
- here the leaf-set entries help

- Node-ID metric and latency metric are not compatible
- If data is replicated on k peers then peers with similar Node-ID might be missed
- Here, a heuristic is used
- Experiments validate this approach

- Parameter b=4, =16, M=32
- In this experiment the hop distance
- grows
- ogarithmically with the number of
- nodes
- The analysis predicts O(log n)
- Fits well

iburg Distribution of Hops

- Parameter b=4, I=16, M=32, n = 100,000
- Result
 - deviation from the expected hop distance is extremely small
- Analysis predicts difference with extremely small probability
 - fits well

- Parameter b=4, I=16, M=3
- Compared to the shortest path astonishingly small
 seems to be constant

Peer-to-Peer Networks

- **Christian Schindelhauer**
- **Fechnical Faculty**
- **Computer-Networks and Telematics**
- Jniversity of Freiburg