
Peer-to-Peer Networks
05 Pastry

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

! Peter Druschel
- Rice University, Houston, Texas
-  now head of Max-Planck-Institute for Computer Science, Saarbrücken/

Kaiserslautern
! Antony Rowstron

- Microsoft Research, Cambridge, GB
! Developed in Cambridge (Microsoft Research)
! Pastry

- Scalable, decentralized object location and routing for large scale peer-to-
peer-network

! PAST
- A large-scale, persistent peer-to-peer storage utility

! Two names one P2P network
- PAST is an application for Pastry enabling the full P2P data storage

functionality
- We concentrate on Pastry

! Each peer has a 128-bit ID: nodeID

-  unique and uniformly distributed

-  e.g. use cryptographic function applied to IP-address

! Routing

-  Keys are matched to {0,1}128

-  According to a metric messages are distributed to the neighbor next to the target

! Routing table has
O(2b(log n)/b) + l entries

-  n: number of peers

- l: configuration parameter

-  b: word length

•  typical: b= 4 (base 16),
l = 16

•  message delivery is guaranteed as long as less than l/2 neighbored peers fail

!  Inserting a peer and finding a key needs O((log n)/b) messages

! NodeId presented in base 2b
-  e.g. NodeID: 65A0BA13

! For each prefix p and letter x ∈ {0,..,2b-1}
add an peer of form px* to the routing
table of NodeID, e.g.

-  b=4, 2b=16
-  15 entries for 0*,1*, .. F*
-  15 entries for 60*, 61*,... 6F*
-  ...
-  if no peer of the form exists, then the

entry remains empty
! Choose next neighbor according to a

distance metric
- metric results from the RTT (round

trip time)

!  In addition choose l neighbors

- l/2 with next higher ID

- l/2 with next lower ID

! Example b=2
! Routing Table

- For each prefix p and letter x ∈
{0,..,2b-1} add an peer of form
px* to the routing table of
NodeID

!  In addition choose l
neighors
- l/2 with next higher ID
- l/2 with next lower ID

! Observation
- The leaf-set alone can be used

to find a target

! Theorem
- With high probability there are at

most O(2b (log n)/b) entries in
each routing table

! Theorem
- With high probability there are at most

O(2b (log n)/b) entries in each routing
table

! Proof
-  The probability that a peer gets the

same m-digit prefix is

-  The probability that a m-digit prefix is
unused is

-  For m=c (log n)/b we get

- With (extremely) high probability there is
no peer with the same prefix of length
(1+ε)(log n)/b

- Hence we have (1+ε)(log n)/b rows with
2b-1 entries each

! New node x sends message to the node
z with the longest common prefix p

!  x receives

-  routing table of z
-  leaf set of z

!  z updates leaf-set

!  x informs informiert l-leaf set

!  x informs peers in routing table

-  with same prefix p (if l/2 < 2b)

! Numbor of messages for adding a peer

- l messages to the leaf-set

-  expected (2b - l/2) messages to nodes
with common prefix

-  one message to z with answer

!  Inheriting the next neighbor
routing table does not allows
work perfectly

! Example

-  If no peer with 1* exists
then all other peers have to
point to the new node

-  Inserting 11

-  03 knows from its routing
table

•  22,33

•  00,01,02

-  02 knows from the leaf-set

•  01,02,20,21

! 11 cannot add all necessary
links to the routing tables

new peer

entries in leaf set

necessary entries in leaf set
missing entries

missing link
request to known neighbors

links of neighbors

! Assume the entry Rij is
missing at peer D

-  j-th row and i-th column of the
routing table

! This is noticed if message of
a peer with such a prefix is
received

! This may also happen if a
peer leaves the network

! Contact peers in the same
row

-  if they know a peer this address is
copied

!  If this fails then perform
routing to the missing link

! Compute the target ID
using the hash function

!  If the address is within the
l-leaf set

-  the message is sent
directly

-  or it discovers that the
target is missing

! Else use the address in
the routing table to
forward the mesage

!  If this fails take best fit
from all addresses

! L: l-leafset

! R: routing table
! M: nodes in the vicinity of D

 (according to RTT)
! D: key

! A: nodeID of current peer

! Ril: j-th row and i-th column of
 the routing table

! Li: numbering of the leaf set
! Di: i-th digit of key D

!  shl(A): length of the larges
common

 prefix of A and D
 (shared header length)

!  If the Routing-Table is correct
-  routing needs O((log n)/b) messages

! As long as the leaf-set is correct
-  routing needs O(n/l) messages
-  unrealistic worst case since even damaged routing tables allow

dramatic speedup

! Routing does not use the real distances
- M is used only if errors in the routing table occur
-  using locality improvements are possible

! Thus, Pastry uses heuristics for improving the lookup
time
-  these are applied to the last, most expensive, hops

! Leaf-set peers are not near, e.g.
- New Zealand, California, India, ...

! TCP protocol measures latency
-  latencies (RTT) can define a metric
-  this forms the foundation for finding the nearest peers

! All methods of Pastry are based on heuristics
-  i.e. no rigorous (mathematical) proof of efficiency

! Assumption: metric is Euclidean

! Assumption
- When a peer is inserted the

peers contacts a near peer
- All peers have optimized routing

tables
! But:

- The first contact is not
necessary near according to the
node-ID

! 1st step
- Copy entries of the first row of

the routing table of P
•  good approximation

because of the triangle
inequality (metric)

! 2nd step
- Contact fitting peer p‘ of p with

the same first letter
- Again the entries are relatively

close
! Repeat these steps until all entries

!  In the best case
-  each entry in the routing table is

optimal w.r.t. distance metric

-  this does not lead to the
shortest path

! There is hope for short
lookup times
- with the length of the common

prefix the latency metric grows
exponentially

-  the last hops are the most
expensive ones

-  here the leaf-set entries help

! Node-ID metric and latency metric are not compatible
!  If data is replicated on k peers then peers with similar

Node-ID might be missed
! Here, a heuristic is used
! Experiments validate this approach

! Parameter b=4,
l=16, M=32

!  In this experiment
the hop distance
grows
logarithmically with
the number of
nodes

! The analysis
predicts O(log n)

! Fits well

Distribution of Hops

! Parameter b=4, l=16, M=32, n = 100,000
! Result

-  deviation from the expected hop distance is extremely small

! Analysis predicts difference with extremely small
probability
-  fits well

! Parameter b=4, l=16, M=3
! Compared to the shortest path astonishingly small

-  seems to be constant

Peer-to-Peer Networks
05 Pastry

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

