
Peer-to-Peer Networks
05 Pastry

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Pastry

! Peter Druschel
- Rice University, Houston, Texas
- now head of Max-Planck-Institute for Computer Science, Saarbrücken/

Kaiserslautern
! Antony Rowstron

- Microsoft Research, Cambridge, GB
! Developed in Cambridge (Microsoft Research)
! Pastry

- Scalable, decentralized object location and routing for large scale peer-to-
peer-network

! PAST
- A large-scale, persistent peer-to-peer storage utility

! Two names one P2P network
- PAST is an application for Pastry enabling the full P2P data storage

functionality
- We concentrate on Pastry

2

Pastry Overview

! Each peer has a 128-bit ID: nodeID
- unique and uniformly distributed
- e.g. use cryptographic function applied to IP-address
! Routing
- Keys are matched to {0,1}128
- According to a metric messages are distributed to the neighbor next to the target
! Routing table has  

O(2b(log n)/b) + l entries

- n: number of peers

- l: configuration parameter

- b: word length
• typical: b= 4 (base 16),  
l = 16

• message delivery is guaranteed as long as less than l/2 neighbored peers fail

! Inserting a peer and finding a key needs O((log n)/b) messages

3

Routing Table

! NodeId presented in base 2b
- e.g. NodeID: 65A0BA13

! For each prefix p and letter x ∈ {0,..,2b-1}
add an peer of form px* to the routing
table of NodeID, e.g.

- b=4, 2b=16
- 15 entries for 0*,1*, .. F*
- 15 entries for 60*, 61*,... 6F*
- ...
- if no peer of the form exists, then the

entry remains empty
! Choose next neighbor according to a

distance metric
- metric results from the RTT (round

trip time)

! In addition choose l neighbors

- l/2 with next higher ID

- l/2 with next lower ID

4

Routing Table

! Example b=2
! Routing Table

- For each prefix p and letter x
∈ {0,..,2b-1} add an peer of
form px* to the routing table of
NodeID

! In addition choose l
neighors

- l/2 with next higher ID
- l/2 with next lower ID

! Observation
- The leaf-set alone can be

used to find a target

! Theorem
- With high probability there are

at most O(2b (log n)/b) entries
in each routing table

5

Routing Table

! Theorem
- With high probability there are at

most O(2
b
 (log n)/b) entries in each

routing table

! Proof
- The probability that a peer gets the

same m-digit prefix is 

- The probability that a m-digit prefix is
unused is

- For m=c (log n)/b we get 
 

- With (extremely) high probability
there is no peer with the same prefix
of length (1+ε)(log n)/b

- Hence we have (1+ε)(log n)/b rows
with 2

b
-1 entries each

6

A Peer Enters

! New node x sends message to the
node z with the longest common prefix
p

! x receives
- routing table of z
- leaf set of z

! z updates leaf-set

! x informs informiert l-leaf set

! x informs peers in routing table

- with same prefix p (if l/2 < 2b)

! Numbor of messages for adding a peer

- l messages to the leaf-set

- expected (2b - l/2) messages to
nodes with common prefix

- one message to z with answer

7

When the Entry-Operation Errs

! Inheriting the next neighbor
routing table does not allows
work perfectly

! Example

- If no peer with 1* exists
then all other peers have to
point to the new node

- Inserting 11

- 03 knows from its routing
table

• 22,33

• 00,01,02

- 02 knows from the leaf-set

• 01,02,20,21

! 11 cannot add all necessary
links to the routing tables

8

new peer

entries in leaf set

necessary entries in leaf set
missing entries

missing link
request to known neighbors

links of neighbors

Missing Entries in the Routing Table

! Assume the entry Rij is
missing at peer D

- j-th row and i-th column of the
routing table

! This is noticed if message of
a peer with such a prefix is
received

! This may also happen if a
peer leaves the network

! Contact peers in the same
row

- if they know a peer this address is
copied

! If this fails then perform
routing to the missing link

9

Lookup

! Compute the target ID
using the hash function

! If the address is within the
l-leaf set

- the message is sent
directly

- or it discovers that the
target is missing

! Else use the address in
the routing table to
forward the mesage

! If this fails take best fit
from all addresses

10

Lookup in Detail

! L: l-leafset

! R: routing table
! M: nodes in the vicinity of D 

 (according to RTT)
! D: key
! A: nodeID of current peer
! Ril: j-th row and i-th column of

the routing table
! Li: numbering of the leaf set
! Di: i-th digit of key D
! shl(A): length of the larges

common  
 prefix of A and D  
 (shared header length)

11

Routing — Discussion

! If the Routing-Table is correct
- routing needs O((log n)/b) messages

! As long as the leaf-set is correct
- routing needs O(n/l) messages
- unrealistic worst case since even damaged routing tables allow

dramatic speedup

! Routing does not use the real distances
- M is used only if errors in the routing table occur
- using locality improvements are possible

! Thus, Pastry uses heuristics for improving the lookup
time
- these are applied to the last, most expensive, hops

12

Localization of the k Nearest Peers

! Leaf-set peers are not near, e.g.
- New Zealand, California, India, ...

! TCP protocol measures latency
- latencies (RTT) can define a metric
- this forms the foundation for finding the nearest peers

! All methods of Pastry are based on heuristics
- i.e. no rigorous (mathematical) proof of efficiency

! Assumption: metric is Euclidean

13

Locality in the Routing Table

! Assumption
- When a peer is inserted the

peers contacts a near peer
- All peers have optimized

routing tables
! But:

- The first contact is not
necessary near according to
the node-ID

! 1st step
- Copy entries of the first row of

the routing table of P
• good approximation

because of the triangle
inequality (metric)

! 2nd step
- Contact fitting peer p‘ of p with

the same first letter
- Again the entries are relatively

close
! Repeat these steps until all entries

are updated

14

Locality in the Routing Table

! In the best case
- each entry in the routing table is

optimal w.r.t. distance metric
- this does not lead to the

shortest path

! There is hope for short
lookup times
- with the length of the common

prefix the latency metric grows
exponentially

- the last hops are the most
expensive ones

- here the leaf-set entries help

15

Localization of Near Nodes

! Node-ID metric and latency metric are not compatible
! If data is replicated on k peers then peers with similar

Node-ID might be missed
! Here, a heuristic is used
! Experiments validate this approach

16

Experimental Results — Scalability

! Parameter b=4,
l=16, M=32

! In this experiment
the hop distance
grows
logarithmically with
the number of
nodes

! The analysis
predicts O(log n)

! Fits well

17

Experimental Results  
Distribution of Hops

18

! Parameter b=4, l=16, M=32, n = 100,000
! Result

- deviation from the expected hop distance is extremely small
! Analysis predicts difference with extremely small

probability
- fits well

Experimental Results — Latency

! Parameter b=4, l=16, M=3
! Compared to the shortest path astonishingly small

- seems to be constant

19

Interpreting the Experiments

! Experiments were performed in a well-behaving simulation
environment

! With b=4, L=16 the number of links is quite large
- The factor 2b/b = 4 influences the experiment
- Example n= 100 000

• 2b/b log n = 4 log n > 60 links in routing table
• In addition we have 16 links in the leaf-set and 32 in M

! Compared to other protocols like Chord the degree is rather
large

! Assumption of Euclidean metric is rather arbitrary

20

Peer-to-Peer Networks
05 Pastry

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

