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Theorem

- If n elements are randomly inserted into an array [0,1[ then
with constant probability there is a ,hole” of size Q)(log n/n),
l.e. an interval without elements.

Proof
- Consider an interval of size log n/ (4n)
- The chance not to hit such an interval is (1-log n/(4n))
- The chance that n elements do not hit this interval is

4n logmn

logn\" logn \ e 4 1 1logn 1
1 — =(1-— > | - = —
4n 4n 4 4D

- The expected number of such intervals is more than 1.

- Hence the probability for such an interval is at least constant.
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A.  Dense Spots
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Theorem

- If n elements are randomly inserted into an array
[0,1] then with constant probability there is a dense

interval of length 1/n with at least ()(log n/ (log log n))
elements.

Proof
- The probability to place exactly i elements in to such

an interval is N N\
@) (=2) ()
- fori =clog n/ (log log n) this probability is at least 1/nX
for an appropriately chosen ¢ and k<1

- Then the expected number of intervals is at least 1
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A, Averaging Effect
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Theorem

- If ©(n log n) elements are randomly inserted into an
array [0,1] then with high probability in every interval of

length 1/n there are ©(log n) elements.
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Markov-Inequality

- For random variable X>0 with E[X] > O:

PIX > k- E[X]] < %

Chebyshev V[X]

P(|X — E[X]| > k] < —5

- for Variance V|X| = E[X2] — E[X]2
Stronger bound: Chernoff
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Theorem Chernoff Bound

- Let x4,...,Xn Independent Bernoulli experiments with
Pixi=1]=p
P[xi=0]=1-p

- Let Sn _ zn: T
1=1

- Then for all ¢>0

— L min{c,c?}pn

P[S, > (1+c¢)-E[S,]] < e 3
- For O=c=1
P[S, < (1—¢c)-E[S,]] < e z¢Pn



A Proof of 1st Chernoff Bound
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We ShOW P[S” 2 (1 + (’)E[S”]] S 6_1‘1‘111‘1{3(53(3 }pn

Fur t>0:

P[S, > (14 ¢)pn] = Pletr > etITern

I — et(l—{—c)p-n./E[et-S.n]

Markov yields:

P [Gfs,, > LE [ GfS'.,,H < %

To do: Choose t appropriately
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‘ ind e o2
We ShOW % S 6_ 111111{3@,(,. }pn

E[e'"] =

where . — et(l—i—c)pn/E[et.Sn] -

=

Independence of random variables x; —_— fo
— H E [(3 ’]

Next we show: _

e—t(l—l—(:)p'n. . (1 —|—p((it o 1))11 < e_min{;,c?}pn




A Proof of 1st Chernoff Bound
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min{c,c2}

Show: y - n
ow e—t(l—I-(_.)pn. . (1 —|—p((it o 1))11 < e 3 P

where: t=1In(l+c¢) >0

o—td+c)pn (1 +p((£t —1)" o t(14c)pn epn_.(e 1)

VA

o —t(1+c)pn+pn(et—1)

— e (14+c¢) In(14c)pn+cpn

e ((-f— ( 1 —|‘(.?) 11’1( 1 —I—(_f) )pn
Next to show -

(14+c¢)ln(l +c¢)> ¢+ % min{c, (:2}
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To show for c>1: (I4+c)ln(l4+¢) > c+ 2c

Lo | =

Forc=1: 21In(2) > 4/3
Derivative:
- left side: In(1+c)
- right side: 4/3
For c>1 the left side is larger
than the right side since
In(1+c)>In (2) > 4/3
Hence the inequality is true c+c2/3
for ¢c>0. AUSE Jnuas

1 (1+c)n(1+c)
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. 1 ¢

To show for c< 1: (1+¢)In(l+¢)> e+ §02

For x>0: din(l + x 1 , ‘
( +T): —1l—ao+a? -2 +2*— ...
dx 1 +x

Hence 1, 1, 1,
111(1—1—3:):.7:—537 —|—§T — 77 + ...

By multiplication

1 : | | ‘ 1 1

Substitute (1+c) In(1+c) which gives for c&(0,1):

| ‘ :
(I1+c¢)In(l+c¢)>c+ 5(:2——(:‘ >c+ —c

6
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Theorem Chernoff Bound

- Let X1,...,Xn independent Bernoulli experiments with
P[xi = 1] =
P[xi = 0] = 1-p

- Let Sn:zilfz'

- Then for all ¢>0
1

P[S, > (1+c)-E[S,]] < e smin{eciom
- For 0=c=1

1 .2

P[S, < (1—c¢)-E[S,]] < e 2¢Pn



A Proof of 2nd Chernoff Bound
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2

> We show P|S, < (1—c)E|S,|| < e~ TP

— S pn

| =
AN
Qo

» For t<0: P[Sv,, < (1 — (3)])'7'1,,] — P[ghqn > (3"(1—(?)1)71]

k = (__37((:1—(::)])71 /E[ (__31‘-5',,]

» Markov yields:

» To do: Choose t appropriately



A Proof of 2nd Chernoff Bound
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» We show 1 2 ,
- =5 pn S,
- < e 2 Ele™"]
» where

L — (_)/t(l—(:) pn /E [(_{t"qn]

Independence of random variables X =—————t—————

» Next we show:

(i—f(l—(:)l)'l'l.v . (1 + p((it o 1) )n S e - %pn

1
™
I
f—t
~.




A Proof of 2nd Chernoff Bound
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We show __ 2
G—t(l—(:)pn . (1 + p((ﬂt B 1)),) S Py 2L

where:  , _ In(1 — ¢)

6—1‘.(1—(_:)])7'1. . ()/1)7'1.(ezt—1)
()—f(1—(.:)1)7‘1.—|—p7'1.(et—1) 1+x < eX

(i—t(l—(:)pn . (1 p((it - 1))11

VAN

— e~ (1—c) In(1—c¢)pn—cpn

Nextto show |—c—(1—c¢)In(l—¢) < —%CQ




A Proof of 2nd Chernoff Bound
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To prove: I
1

—c—(1—=¢)In(l —¢) < —5(32
For c=0 we have equality T o(1-c)in(1-c)
Derivative of left side: In(1-c)
Derivative of right side: -c
Now 1 '

r 5 1. /

| hT(l —I—. r) =1 — 5:1;2 + §:1;3 — ZI:J‘ + ...

This implies
1 1 .
In(l —¢) = —c— ¢ — =c*— ... < —c

2 3
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Lemma

If m=k n In n Balls are randomly placed in n bins:

1. Then for all c>k the probability that more than cIn n balls are in a bin is at most
O(n®) for a constant c>0.

2. Then for all c<k the probability that less than c In n balls are in a bin is at most
O(n™®) for a constant ¢>0.

Proof:

Consider a bin and the Bernoulli experiment B(k n In n,1/n) and
expectation: y=m/n=klinn

1. Case: c>2k P[X > clnn] = P[X > (14+(¢/k—1))kInn]
S (_’,_%(C/lﬁ:—l)klnn S 'n_%(c_k)

P[X > clnn] = P[X > (1+(c/k—1))kInn]

< (3_% C/k—l)‘Zklnn S n‘_%((j_k_)‘z/

P X <clnn| =P|X < (1-(1—c/k))kInn]

< e—%(l—c/k)lenn < n-%(k—c)z/k

2. Case: k<c<2k

3. Case: c<k

[(Emm

5]
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