

Peer-to-Peer Networks 07 Degree Optimal Networks

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

FREI

Degree Optimal Networks

M. Frans Kaashoek and David R. Karger 2003

FREBURG

A Shuffle, Exchange, Shuffle-Exchange

- Consider binary string s of length m
 - shuffle operation:

- exchange:
 - exchange(s₁, s₂, s₃,..., s_m) = (s₁, s₂, s₃,..., ¬s_m)
- shuffle exchange:

SE(S) = exchange(shuffle(S))
=
$$(s_2, s_3, ..., s_m, \neg s_1)$$

Observation:

Every string a can be transformed into a string b by at most m shuffle and shuffle - exchange operations

Observation

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations Beispiel:

6

ta. 004100000

UNI FREIBURG

- A De Bruijn graph consists of n=2m nodes,
 - each representing an m digit binary strings
- Every node has two outgoing edges
 - (u,shuffle(u))
 - (u, SE(u))
- Lemma
 - The De Bruijn graph has degree 2 and diameter log n
- Koorde = Ring + DeBruijn-Graph

•

•

➤Consider ring with 2^m nodes and De Bruijn edges

UNI FREIBURG

Note

- shuffle(s₁, s₂,..., s_m) = (s₂,..., s_m,s₁)
 - shuffle (x) =

 (x div 2^{m-1})+(2x) mod 2^m
- SE(S) = $(s_2, s_3, ..., s_m, \neg s_1)$
 - SE(x) = 1-(x div 2^{m-1})+(2x) mod 2^m
- Hence: Then neighbors of x are
 - 2x mod 2^m and
 - 2x+1 mod 2^m

- To avoid collisions we choose
 - m > (2+c) log (n)
- Then the probability of two peers colliding is at most n^{-c}
- But then we have much mor nodes in the graph than peers in the network
- Solution
 - Every peer manages all DeBruijn nodes between his position and his successor on the ring
 - only for incoming edges
 - outgoing edges are considered only from the peer's poisition on the ring

FREIBURG

Theorem

- Every node has four pointers
- Every node has at most O(log n) incoming pointers
 w.h.p.
- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.

But:

- Connectivity of the network is very low.

- Theorem
 - 1. Every node has four pointers
 - 2. Every node has at most O(log n) incoming pointers w.h.p.
- Proof:
 - 1. follows from the definition of the De Bruijn graph and the observation that only non-virtual nodes have outgoing edges
 - 2. The distance between two peers is at most c (log n)/n 2^m with high probability
 - The number of nodes pointing to this distance is therefore at most c (log n) with high probability

Theorem

- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.
- Proof sketch:
 - The minimal distance of two peers is at least n^{-c} 2^m w.h.p.
 - Therefore use only the c log n most significant bits in the routing
 - since the prefix guarantees that one end in the responsibility area of a peer
 - Follow the routing algorithm on the De Bruijn-graph until one ends in the responsibility area of a peer

BURG

- Consider alphabet using k letters, e.g. k = 3
- Now, every k-De Bruijnnode has successors
 - (kx mod km)
 - (kx +1 mod km)
 - (kx+2 mod km)
 - ... (kx+k-1 mod km)
- Diameter is reduced to
 - (log m)/(log k) as fry
- Graph connectivity is increased to k

- Straight-forward generalization of Koorde
 - by using k-De Bruijn graphs
- Improves lookup time and messages to O((log n)/(log k)) steps

Peer-to-Peer Networks 07 Degree Optimal Networks

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

FREI