

Peer-to-Peer Networks 08 Kelips and Epidemic Algorithms

BURG

L'AL

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

- Indranil Gupta, Ken Birman,
 Prakash Linga, Al <u>Demers</u>,
 Robbert van Renesse
 - Cornell University, Ithaca, New York
- Kelip-kelip
 - malay name for synchronizing fireflies
- P2P Network
 - uses DHT
 - constant lookup time
 - O(n^{1/2}) storage size
 - fast and robust update

Copyrights @ 1998 - 2008 by TourMalaysia

CoNe out-degree Loohup Freiburg $O(\sim^{1/d})$ d: dimasion (AN ~ O(d) O (logm) (hord (10)m) - Parto 2 Gnutelle 2 Napste $\mathcal{O}(\land)$ m-1Koorde O(lojm) $O(\Lambda)$ $\mathcal{G}(\sqrt{m})$ Kelips $\hat{O}(\Lambda)$

FREIBURG

Kelips Overview

1000

- Peers are organized in k affinity groups
 - peer position chosen by DHT mechanism
 - k is chosen as $n^{1/2}$ for n peers
- Data is mapped to an affinity group using DHT
 - all members of an affinity group store all data
- Routing Table
 - each peer knows all members of the affinity group
 - each peer knows at least one member of each affinity group
- Updates
 - are performed by epidemic algorithms

- Affinity Group View
 - Links to all O(n/k) group members
 - This set can be reduced to a partial set as long as the update mechanism works
- Contacts
 - For each of the other affinity group a small (constant-sized) set of nodes
 - O(k) links
- Filetuples
 - A (partial) set of tuples, each detailing a <u>file</u> name and host IP address of the node storing the file
 - Q(F/k) entries, if F is the overall number of files
- Memory Usage: O(n/k + k + F/k)
 - $\text{ for } \mathbf{k} = \mathbf{O}\big(\sqrt{n+F}\big)$

INN

$$O(\sqrt{n+F})$$

$$\frac{n}{k} + k + \frac{1}{4}$$

- Lookup-Algorithm
 - compute index value
 - find affinity group using hash function
 - contact peer from affinity group
 - receive index entry for file (if it exists)
 - contact peer with the document
- Kelips needs four hops to retrieve a file

I IBURG

 $h\left(Lady Lbega'' \right) = 2$

A Inserting a Peer Freiburg

- Algorithm
 - Every new peer is introduced by a special peer, group or other method,
 - e.g. web-page, forum etc.
 - The new peer computes its affinity group and contacts any peer
 - The new peer asks for one contact of the affinity group and copies the contacts of the old affinity group
 - By contacting a neighbor node in the affinity group it receives all the necessary contacts and index filetuples
 - Every contact is replaced by a random replacement (suggested by the contact peer)
 - The peer starts an epidemic algorithm to update all links
- Except the epidemic algorithm the runtime is O(k) and only O(k) messages are exchanged

 $O(\sqrt{m})$

- Start an Epidemic Algorithm to Spread the news in the affinity group
- Such an algorithm uses O(n/k) messages and needs O(log n) time
- We introduce Epidemic Algorithms later on

- Kelip works in heartbeats, i.e. discrete timing
- In every heartbeat each peer checks one neighbor
- If a neighbor does not answer for some time
 - it is declared to be dead
 - this information is spread by an epidemic algorithm
- Using the heartbeat mechanisms all nodes also refresh their neighbors
- Kelips quickly detects missing nodes and updates this information

- Kelips has lookup time O(1), but needs O(n^{1/2}) sized Routing Table
 - not counting the $O(F/n^{1/2})$ file tuples
- Chord, Pastry & Tapestry use lookup time O(log n) but only O(log n) memory units
- Kelips is a reasonable choice for medium sized networks
 - up to some million peers and some hundred thousands index entries

degree: Ohn = O (3m) with constations CoNe Freiburg

 $3\frac{3}{7}\frac{3}{3} - 1$

What is an Epidemic Algorithm

fibomace.

A Epidemic Spread of Viruses

Observation

- ⁰- most viruses do not prosper in real life
- 6- other viruses are very successful and spread fast
- How fast do viruses spread?
- How many individuals of the population are infected?
- Problem
 - »- social behavior and infection risk determine the spread
 - the reaction of a society to a virus changes the epidemy
 - viruses and individuals may change during the infection

- <u>SI-Model (rumor spreading)</u>
 - susceptible $\rightarrow \underline{\mathsf{infected}}$
- SIS-Model (birthrate/deathrate)
 - susceptible \rightarrow infected \rightarrow susceptible
- SIR-Model
 - susceptible \rightarrow infected \rightarrow recovered
- Continuous models
 - _- deterministic
 - <u>-</u> or stochastic
- Lead to differential equations
- Discrete Models
 - graph based models
 - random call based
- Lead to the analysis of Markov Processes

- SI-Model (rumor spreading)
 - susceptible \rightarrow infected
 - At the beginning one individual is infected
 - Every contact infects another indiviual
 - In every time unit there are in the expectation ß contacts
- SIS-Model (birthrate/deathrate)
 - susceptible \rightarrow infected \rightarrow susceptible
 - similar as in the SI-Model, yet a share of $\overline{\delta}$ of all infected individuals is healed and can receive the virus again
 - with probability $\boldsymbol{\delta}$ an individual is susceptible again
- SIR-Model
 - susceptible \rightarrow infected \rightarrow recovered
 - like SI-Model, but healed individuals remain immune against the virus and do not transmit the virus again

L <-- 2

~

- Variables
 - ___n: total number of individuals
 - remains constant
 - $\underline{S}(t)$: number of (healthy) susceptible individuals at time t
 - I(t): number of infected individuals
- Relative shares
 - s(t) := S(t)/n
 - i(t) := l(t)/n
- At every time unit each individual contacts ß partners
- Assumptions:
 - Among ß contact partnres ß s(t) are susceptible
 - All I(t) infected individuals infect $\[mbox{\sc s}(t)\]$ I(t) other individuals in each round

I(t)

- Leads to the following recursive equations:
 - $-\underline{l(t+1)} = \underline{l(t)} + \beta s(t) \underline{l(t)}$
 - $-i(t+1) = i(t) + \beta i(t) s(t) \zeta$
 - $S(t+1) = S(t) \beta s(t) I(t)$
 - $s(t+1) = s(t) \beta i(t) s(t)$

I IBURG

NE

 $\frac{S(t)}{S(t)} = S(t)$

 $B \cdot s(t) \cdot \overline{f}(t)$

$$\sum_{\substack{c \in \mathbf{N} \in \mathbf{Freiburg}}} SI-Model$$

$$s(t) = A - i(t)$$

$$i(t+1) = i(t) + \beta i(t) s(t)$$

$$s(t+1) = s(t) - \beta i(t) s(t)$$

$$i(t+1) - i(t) = s(t) - \beta i(t) s(t)$$

$$i(t+1) - i(t) = \frac{i(t+1) - i(t)}{1} \approx \frac{di(t)}{dt}$$

$$\frac{di(t)}{1} = \beta \cdot i(t)(1 - i(t))$$

$$i(t) = \frac{1}{1 + \left(\frac{1}{i(0)} - 1\right)} e^{-\beta t}$$

$$\frac{A + c \cdot e^{-\beta t}}{e^{-\beta t}}$$

Variables

- n: total number of individuals
 - remains constant
- S(t): number of (healthy) susceptible individuals at time t
- I(t): number of infected individuals

Relative shares

- s(t) := S(t)/n
- i(t) := I(t)/n
- At every time unit each individual contacts ß partners

- Assumptions:
 - Among ß contact partners ß s(t) are susceptible
 - All I(t) infected individuals infect ß s(t) I(t) other individuals in each round
 - A share of δ of all infected individuals is susceptible again
- Leads to the following recursive equations:

$$- I(t+1) = I(t) + \beta i(t) S(t) - \delta I(t)$$

$$- i(t+1) = \underline{i(t) + \beta i(t) s(t)} - \underline{\delta i(t)}$$

$$- S(t+1) = S(t) - \beta i(t) S(t) + \delta I(t)$$

$$- s(t+1) = s(t) - \beta i(t) s(t) + \delta i(t)$$

$$\underbrace{\bigwedge_{T \in iburg}}_{\text{Freiburg}} \underbrace{\text{SI-Model}}_{\substack{n-i(t)}}$$

$$= i(t+1) = i(t) + \beta i(t) s(t) - \delta i(t)$$

$$= s(t+1) = s(t) - \beta i(t) s(t) + \delta i(t)$$

$$= \text{Idea:}$$

$$= i(t) \text{ is a continuous function} = \frac{i(t+1) - i(t)}{1} \approx \frac{di(t)}{dt}$$

$$= \frac{di(t)}{dt} = \beta \cdot i(t)(1 - i(t)) - \delta i(t)$$

$$= \underbrace{\text{Solution:}}_{for} = \frac{\delta}{\beta}$$

$$i(t) = \underbrace{1 - \rho}_{l + (\frac{1-\rho}{i(0)} - 1)} e^{-(\beta - \delta)t}$$

SIS-Model

Interpretation of Solution

$$i(t) = \frac{1-\rho}{1+\left(\frac{1-\rho}{i(0)}-1\right)e^{-(\beta-\delta)t}} \qquad \rho = \frac{\delta}{\beta}$$
If $\beta < \delta$

- then i(t) is strictly decreasing
- If ß > δ
 - then i(t) converges against $1 \rho = 1 \delta/\beta$
- Same behavior in discrete model₂₀
 has been observed
 - [Kephart,White'94]

Variables

- n: total number of individuals
 - remains constant
- -S(t): number of (healthy) susceptible individuals at time t
- I(t): number of infected individuals
- -R(t): number or recovered individ.
- Relative shares
 - -s(t) := S(t)/n
 - -i(t) := I(t)/n
 - -r(t) := R(t)/n
- At every time unit each individual contacts ß partners

- Assumptions:
 - Among ß contact partners ß s(t) are susceptible
 - All I(t) infected individuals infect ß s(t) I(t) other individuals in each round
 - A share of δ of all infected individuals is immune (recovered) and never infected again
- Leads to the following recursive equations:

$$-I(t+1) = I(t) + \beta i(t) S(t) - \delta I(t)$$

$$-i(t+1) = i(t) + \beta i(t) i(t) - \delta i(t)$$

$$-\underline{S}(t+1) = S(t) - \beta i(t) S(t)$$

$$-s(t+1) = s(t) - \beta i(t) s(t)$$

$$-R(t+1) = R(t) + \delta I(t)$$

$$-r(t+1) = r(t) + \delta i(t)$$

 The equations and its differential equations counterpart

$$-i(t+1) = i(t) + \beta i(t) i(t) - \delta i(t)$$

- $s(t+1) = s(t) \beta i(t) s(t)$
- $r(t+1) = r(t) + \delta i(t)$
- No closed solution known
 hence numeric solution
- Example
 - s(0) = 1
 - $-i(0) = 1.27 \cdot 10^{-6}$
 - r(0) = 0
 - ß = 0.5
 - -δ = 0.3333

$$\begin{aligned} \frac{ds(t)}{dt} &= -\beta \cdot i(t)s(t) \\ \frac{di(t)}{dt} &= \beta \cdot i(t)s(t) - \delta i(t) \\ \frac{dr(t)}{dt} &= -\delta i(t) \end{aligned}$$

- Same data storage at all locations
 - new entries appear locally
- Data must be kept consistently
- Algorithm is supposed to be decentral and robust
 - since connections and hosts are unreliable
- Not all databases are known to all
- Solutions
 - Unicast
 - New information is sent to all data servers
 - Problem:
 - not all data servers are known and can be reached
 - Anti-Entropy
 - Every local data server contacts another one and exchanges all information
 - total consistency check of all data
 - Problem
 - comunication overhead
- Epicast ...

BURG

Epicast

- new information is a rumor
- as long the rumor is new it is distributed
- Is the rumor old, it is known to all servers
- Epidemic Algorithm [Demers et al 87]
 - distributes information like a virus
 - robust alternative to BFS or flooding
- Communication method
 - <u>Push & P</u>ull, d.h. infection after log₃ n + O(log log n) rounds with high probability
- Problem:
 - growing number of infections increases comunication effort
 - trade-off between robustness and communication overhead

- Given a contact graph G=(V,E)
 - n: number of nodes
 - I(t) := number of infected nodes in round t
 - i(t) = I(T)/n
 - S(t) := number of susceptible nodes in round t
 - I(t)+S(t)=n
 - s(t) = S(T)/n
- Infection:

- If u is infected in round t and (u,v) \in E, then v is infected in round t+1

- Graph determines epidemics
- Complete graph:
 - 1 time unit until complete infection
- Line graph
 - n-1 time units until complete infection

Epidemics in Static Random Graphs

- Random graph G_{n,p}
 - n nodes
 - Each directed edge occurs with independent probability p
- Expected indegre $\gamma = p(n-1)$
- How fast does an epidemic spread in $G_{n,p}$, if $\gamma \in O(1)$?
- Observation f
 ür n>2:
 - With probability $\geq 4^{-\gamma} \ \text{and} \leq e^{-\gamma}$
 - a node has in-degree 0 and cannot be infected
 - a node has out-degree 0, and cannot infect others
- Implications:
 - Random (static) graph is not a suitable graph for epidemics

P

FREIBURG