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Indranil Gupta, Ken Birman,
Prakash Linga, Al Demers,
Robbert van Renesse

- Cornell University, Ithaca, New
York

Kelip-kelip
- malay name for synchronizing
fireflies

P2P Network

- uses DHT
@ constant lookup time

Copyrights @ 1998 - 2008 by TourMalaysia

- O(n"?) storage size

- fast and robust update
orTr =
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é%?e Kelips Overview 1, ¢~ jou. 7

Freiburg

Peers are organized in k

affinity groups
- peer position chosen by DHT ~ Affinity Groups . =

mechanism
- k is chosen as n'’? for n peers ( Peers Cg O @ ’
Data is mapped to an affinity  Index entry > Z
group using DHT

f

- all members of an affinity group Document Eﬂ‘@% \ /Q > 5
7

store all data \—

: Peers
Routing Table C(JL %u@ O)

- each peer knows all members of

/
the affinity group < O O/ o O >
"E
- each peer knows at least one )
member of each affinity group

Updates

- are performed by epidemic

algorithms ——-0_
R

-
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Affinity Group View

- Links to all O(n/k) group members

- This set can be reduced to a partial set

as long as the update mechanism
works

Contacts

- For each of the other affinity group a
small (constant-sized) set of nodes

- O(k) links

—_——

Filetuples

- A (partial) set of tuples, each detailing
a file name and host IP address of the
node storing the file

- O(F/K) entries, if F is the overall
number of files

Memory Usage: O(n/k + k + F/K)
-fork = O(v/n + F)

Routing Table

Affinity Groups

( Iggers

Index entry

g5
Document D_O‘//O\ /Q >
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Lookup

Lookup-Algorithm

- compute index
value

- find affinity group
using hash function

- contact peer from
affinity group

- receive index entry
for file (if it exists)

- contact peer with

the document
Kelips needs four
hops to retrieve a
file

Affinity Groups




A Inserting a Peer
ngglelrg

First Affinity
Group Neighbor

Algorithm \ v,
- Every new peer is introduced by a ( O /Q sj/o )
special peer, group or other method, N —

e.g. web-page, forum etc.

New Peer
- The new peer computes its affinity <

group and contacts any peer

Contacts\ =~
- The new peer asks for one contact
- <o =30 o)

of the affinity group and copies the
contacts of the old affinity group

- By contacting a neighbor node in
the affinity group it receives all the O O

necessary contacts and index \\6\0 O
filetuples B
- Every contact is replaced by a Affinity ikl Ng NNy
Group Neighbors 2%
random replacement (suggested by Spt— ]
the contact peer) C Q<_Q Q“ O >

- The peer starts an epidemic

algorithm to update all links < O @—-6>O o >
Except the epidemic algorithm the

runtime is O(k) and only O(k) <O<—O O O) __@_

messages are exchanged

/ Introducing Peer
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,A\ How to Add a Document
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Start an Epidemic Algorithm to Spread the news in the

affinity grou
Such an algorithm uses O(n/k) messages and needs O(log
n) time o

fWe introduce Epidemic Algorithms later on
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Kelip works in heartbeats, i.e. discrete timing
In every heartbeat each peer checks one neighbor

If a neighbor does not answer for some time
- it is declared to be dead
- this information is spread by an epidemic algorithm

Using the heartbeat mechanisms all nodes also
refresh their neighbors

Kelips quickly detects missing nodes and updates
this information




A\ Discussion

CoNe
Freiburg

Kelips has lookup time O(1), but needs O(n'"?) sized
Routing Table

- not counting the O(F/n'?) file tuples
Chord, Pastry & Tapestry use lookup time_O(log n) but
only O(log n) memory units

Kelips is a reasonable choice for medium sized networks

- up to some million peers and some hundred thousands index
entries







A ToDo
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What is an Epidemic Algorithm

tiboaace,



A Epidemic Spread of Viruses
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Observation
- most viruses do not prosper in real life
é- other viruses are very successful and spread fast

How fast do viruses spread?
How many individuals of the population are infected?

Problem
v- social behavior and infection risk determine the spread

- the reaction of a society to a virus changes the epidemy
- viruses and individuals may change during the infection
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SI-Model (rumor spreading)
- susceptible — infected

SIS-Model (birthrate/deathrate)

- suscgptible > infeﬂed — susceptible
SIR-Model

- susceptible — infected — recovered

Continuous models
- deterministic
- or stochastic

Lead to differential equations

& Discrete Models
- graph based models

- random call based
Lead to the analysis of Markov Processes



A\ Infection Models
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SI-Model (rumor spreading) C—> /\

- susceptible — infected
- At the beginning one individual is infected

- Every contact infects another indiviual
- In every time unit there are in the expectation 3 contacts

SIS-Model (birthrate/deathrate)

- susceptible — infected — susceptible

- similar as in the SI-Model, yet a share of 0 of all infected individuals
Is healed and can receive the virus again

- with probability ® an individual is susceptible again

SIR-Model

- susceptible — infected — recovered

- like SI-Model, but healed individuals remain immune against the
virus and do not transmit the virus again
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Variables
—=n: total number of individuals I[f)é&) —~
remains constant (s v S ({-) 0 i [f'/
S

——

(t): number of (healthy) susceptible individuals at time t
I(t): number of infected individuals

——

Relative shares

- s(t) := S(t)/n

- i(t) ;= I(t)/n

At every time unit each individual contacts 3 partners

Assumptions:
- Among 3 contact partnres 3 s(t) are susceptible
- All I(t) infected individuals infect 3 s(t) I(t) other individuals in each round

Leads to the following recursive equations:
7—@ =L(t_)+f58(t)l@c”

SitH1) = i) + Ri(t) s(t) ¢f

- S(t+1) = S(t) = R s(t) I(t)

-s(t+1) = s(t) = Ri(t) s(t) -2
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A SI-Model c(e) = A7 (8]
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4
1) =i +Ri)st) = Gt e i) (1)
s(t+1) =s(t) — Ri(t) s(t) f
Idea: b‘w/ ()< 5 a0 ty))
- i(t) is a continuous function
- i(t+1)-i(t) approximate first derivative ) \ \—’//’:ﬂ
it+1) —i(t)  di(t) if:c
— 1 _ﬂ A+ c. Qf/) 3
du(t . .
I d(t) :5'2(15)(1—2(75))J -t
N N~ L
Solution: N+, Pt
1 2 N .
Z(t) = | A p e
1 _ =L
R GOt A S
AN —~
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A SI-Model / e

—h

The number of
infected grows
exponentially
until half of all
members are P
infected

Then the
number of
susceptible fos
decrease
exponentially

4,25
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Variables
- n: total number of individuals
remains constant
- S(t): number of (healthy) susceptible individuals at time t
- I(t): number of infected individuals
Relative shares
- s(t) := S(t)/n
- i(t) == I(t)/n
At every time unit each individual contacts 3 partners



A SIS-Model
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Assumptions:
- Among 3 contact partners 3 s(t) are susceptible

- All I(t) infected individuals infect 3 s(t) I(t) other individuals in each
round

- A share of 0 of all infected individuals is susceptible again
Leads to the following recursive equations:

SItH1) = 1) + Bi() S(t) — S I(t) %
SitH) = i) + R s(t) — B i(t)
SS(tH1) = S(t)— Bi(t) S(t) + 5 I(t) })

Ss(t+1) = s(t) = Ri(t) s(t) + Bi(t)



,A\ SI-Model )
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/
i(t+1) = it) + Bi(t) s(t)— B i(t)
s(t+1)  =s(t)— Bi(t) s(t) + 5 i(t)
|dea:

- i(t) is a continuous function
- i(t+1)-i(t) approximate first derivative i(t T 1) — ’l(t) dl(t)

~~/
~/

o dt
dift) =G -a(t)(1 —(t)) — ou(t)
dt L - | J/\ y
Solution: | i) — Jd - p)
- for i:(_i L 1+ (% - ) e—(B—0)1
NI

C



/A\ SIS-Model

CoNe Interpretation of Solution
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1_/) )

p =
14 (+L—1) e (3-9)
1(0)

i(t) =

]

IfR <®

- then i(t) is strictly decreasing

If3>0

- then i(t) converges against
1-p=1-038/B Lo

Same behavior in discrete model.,|

has been observed

- [Kephart,White'94]

100

A= g - — 801

607
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Variables
- n: total number of individuals
remains constant
- S(t): number of (healthy) susceptible individuals at time t
- I(t): number of infected individuals
- R(t): number or recovered individ.
Relative shares
-s(t) := S(t)/n
-i(t) := I(t)/n
-r(t) := R(t)/n
At every time unit each individual contacts [} partners
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Assumptions:
- Among R contact partners 3 s(t) are susceptible
- All I(t) infected individuals infect B s(t) I(t) other individuals in each round

- A share of d of all infected individuals is immune (recovered) and never
infected again

Leads to the following recursive equations: A~
S1t+1) = 1) + Ri(t) S(t) = B I(t)

Sit+1) = i) + R i) — Bi(t) 0 60
-S(t+1) =S(t) - Ri(t) S(t) @\7) @ j\b
-s(t+1) =s(t) - Ri(t) s(t)
-R(t+1) =R(t) + 5 I(t)

-r(t+1) = r(t) + 0 i(t)

f
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The equations and its
differential equations
counterpart

Si(t+1) = it) + Ri) i) — di(t)
- s(t+1)  =s(t)— Ri(t) s(t)
-r(t+1) = r(t) + 3i(t)

No closed solution known

- hence numeric solution

Example
-s(0) =1
-i(0)  =1.27-10%
- r(0) =0
R =0.5
-5 = 0.3333

———

0.4

1 -
0.8

0.5

0.2

ds(t) .
= o
1t
dd(t) = [ -i(t)s(t) — di(t)
r(t ,
= — 04 (t)

5(2)

o)

i(f)

20 40 B0 80 100 120 140
Days
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Same data storage at all locations
- new entries appear locally

Data must be kept consistently
Algorithm is supposed to be decentral and robust

- since connections and hosts are unreliable &

Not all databases are known to all DQD

Solutions / ><

- Unicast To— N )
New information is sent to all data servers D

- Problem: ‘ <\ ¢
not all data servers are known and can be reached <

- Anti-Entropy

Every local data server contacts another one and exchanges all information
total consistency check of all data

- Problem é:%

comunication overhead

Epicast ...
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Comor S/"vw 5/,4}
Epicast

- new information is a rumor

- as long the rumor is new it is distributed
- Is the rumor old, it is known to all servers

Epidemic Algorithm [Demers et al 87]

- distributes information like a virus
- robust alternative to BFS or flooding

Communication method

- Push & Pull, d.h. infection after logz n + O(log log n) rounds
with high probability

Problem:
- growing number of infections increases comunication effort

- trade-off between robustness and communication overhead



A SI-Model for Graphs
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Given a contact graph G=(V,E) D&

- n: number of nodes

- I(t) := number of infected nodes in round t
-i(t) = (T)/n
- S(t) := number of susceptible nodes in round t 4

I(t)+S(t)=n .
_s(t) = S(T)/n BF§
Infection:

- If u is infected in round t and (u,v) € E, then v is infected in round t+1
Graph determines epidemics

Complete graph:

- 1 time unit until complete infection

Line graph

- n-1 time units until complete infection _



A Epidemics in Static Random Graphs
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Random graph Gnp r

—_——

- n nodes
- Each directed edge occurs with independent probability p
Expected indegre y = p (n—-1)
How fast does an epidemic spread in Gnp, if y €O(1) ?
Observation fur n>2:
- With probability =2 47Y and <e™Y
a node has in-degree 0 and cannot be infected
a node has out-degree 0, and cannot infect others
Implications:

- Random (static) graph is not a suitable graph for epidemics
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