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Kelips 

!  Indranil Gupta, Ken Birman, 
Prakash Linga, Al Demers, 
Robbert van Renesse 
- Cornell University, Ithaca, New 

York 

! Kelip-kelip 
- malay name for synchronizing 

fireflies 

! P2P Network 
-  uses DHT 
-  constant lookup time 
- O(n1/2) storage size 
-  fast and robust update 
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Kelips Overview 

! Peers are organized in k 
affinity groups 
-  peer position chosen by DHT 

mechanism 
-  k is chosen as n1/2 for n peers 

! Data is mapped to an affinity 
group using DHT 
-  all members of an affinity group 

store all data 

! Routing Table 
-  each peer knows all members of 

the affinity group 
-  each peer knows at least one 

member of each affinity group 

! Updates 
-  are performed by epidemic 

algorithms 
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Routing Table 

! Affinity Group View 
-  Links to all O(n/k) group members 
-  This set can be reduced to a partial set 

as long as the update mechanism 
works 

! Contacts 
-  For each of the other affinity group a 

small (constant-sized) set of nodes 
- O(k) links 

! Filetuples 
- A (partial) set of tuples, each detailing 

a file name and host IP address of the 
node storing the file 

- O(F/k) entries, if F is the overall 
number of files 

! Memory Usage: O(n/k + k + F/k) 
-  for  
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Lookup 

! Lookup-Algorithm 
-  compute index 

value 
-  find affinity group 

using hash function 
-  contact peer from 

affinity group 
-  receive index entry 

for file (if it exists) 
-  contact peer with 

the document 

! Kelips needs four 
hops to retrieve a 
file 
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How to Add a Document 

! Start an Epidemic Algorithm to Spread the news in the 
affinity group 

! Such an algorithm uses O(n/k) messages and needs O(log 
n) time 

! We introduce Epidemic Algorithms later on 
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Discussion 

! Kelips has lookup time O(1), but needs O(n1/2) sized 
Routing Table 
-  not counting the O(F/n1/2) file tuples 

! Chord, Pastry & Tapestry use lookup time O(log n) but 
only O(log n) memory units 

! Kelips is a reasonable choice for medium sized networks 
-  up to some million peers and some hundred thousands index 

entries 
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To Do 

! What is an Epidemic Algorithm 
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Epidemic Spread of Viruses 

! Observation 
- most viruses do not prosper in real life 
-  other viruses are very successful and spread fast 

! How fast do viruses spread? 
! How many individuals of the population are infected? 
! Problem 

-  social behavior and infection risk determine the spread 
-  the reaction of a society to a virus changes the epidemy 
-  viruses and individuals may change during the infection  
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Mathematical Models 

! SI-Model (rumor spreading) 
-  susceptible → infected 

! SIS-Model (birthrate/deathrate) 
-  susceptible → infected → susceptible 

! SIR-Model 
-  susceptible → infected → recovered 

! Continuous models 
-  deterministic 
-  or stochastic 

! Lead to differential equations 
! Discrete Models 

-  graph based models 
-  random call based 

! Lead to the analysis of Markov Processes 
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Infection Models 

! SI-Model (rumor spreading) 
-  susceptible → infected 
- At the beginning one individual is infected 
- Every contact infects another indiviual  
-  In every time unit there are in the expectation ß contacts 

! SIS-Model (birthrate/deathrate) 
-  susceptible → infected → susceptible 
-  similar as in the SI-Model, yet a share of δ of all infected individuals 

is healed and can receive the virus again 
- with probability δ an individual is susceptible again 

! SIR-Model 
-  susceptible → infected → recovered 
-  like SI-Model, but healed individuals remain immune against the 

virus and do not transmit the virus again 
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SI-Model 

! Variables 
-  n: total number of individuals 

•  remains constant 
- S(t): number of (healthy) susceptible individuals at time t 
-  I(t): number of infected individuals   

! Relative shares 
-  s(t) := S(t)/n   
-  i(t) := I(t)/n   

! At every time unit each individual contacts ß partners 
! Assumptions: 

- Among ß contact partnres ß s(t) are susceptible 
- All I(t) infected individuals infect ß s(t) I(t) other individuals in each round 

!  Leads to the following recursive equations: 
-  I(t+1)  =  I(t)  + ß s(t) I(t) 
-  i(t+1)  =  i(t)  + ß i(t) s(t) 
- S(t+1)  = S(t) –  ß s(t) I(t) 
-  s(t+1)  = s(t) –  ß i(t) s(t) 



SI-Model 

! The number of 
infected grows 
exponentially 
until half of all 
members are 
infected 

! Then the 
number of 
susceptible 
decrease 
exponentially 
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SIS-Model 

!  Assumptions: 
- Among ß contact partners ß s(t) are susceptible 
- All I(t) infected individuals infect ß s(t) I(t) other individuals in each 

round 
- A share of δ of all infected individuals is susceptible again 

!  Leads to the following recursive equations: 
-  I(t+1)  =  I(t)  + ß i(t) S(t) –  δ I(t) 
-  i(t+1)  =  i(t)  + ß i(t) s(t) –  δ i(t) 
- S(t+1)  = S(t) –  ß i(t) S(t) + δ I(t) 
- s(t+1)  = s(t) –  ß i(t) s(t) + δ i(t)  
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SIS-Model 
Interpretation of Solution 

!  If ß < δ 
-  then i(t) is strictly decreasing 

!  If ß > δ 
-  then i(t) converges against  

1 − ρ = 1 − δ/ß 

! Same behavior in discrete model 
has been observed  
-  [Kephart,White‘94] 
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SIR-Model 

! Variables 
- n: total number of individuals 

• remains constant 
- S(t): number of (healthy) susceptible individuals at time t 
- I(t): number of infected individuals 
- R(t): number or recovered individ. 

! Relative shares 
- s(t) := S(t)/n  
- i(t) := I(t)/n 
- r(t) := R(t)/n 

! At every time unit each individual contacts ß partners 



17 

SIR-Model 

! Assumptions: 
- Among ß contact partners ß s(t) are susceptible 
- All I(t) infected individuals infect ß s(t) I(t) other individuals in each round 
- A share of δ of all infected individuals is immune (recovered) and never 

infected again 

! Leads to the following recursive equations: 
-  I(t+1)  =  I(t)  + ß i(t) S(t) –  δ I(t) 
-  i(t+1)  =  i(t)  + ß i(t) i(t) –  δ i(t) 
- S(t+1)  = S(t) –  ß i(t) S(t) 
- s(t+1)  = s(t) –  ß i(t) s(t)  
- R(t+1)  = R(t) + δ I(t) 
-  r(t+1)  =  r(t) + δ i(t) 
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SIR-Model 

! The equations and its 
differential equations 
counterpart 

-  i(t+1)  =  i(t)  + ß i(t) i(t) –  δ i(t) 

-  s(t+1)  = s(t) –  ß i(t) s(t)  

-  r(t+1)  =  r(t) + δ i(t) 

! No closed solution known 
- hence numeric solution 

! Example 
-  s(0)  = 1 

-  i(0)  = 1.27 10-6 

-  r(0)  = 0 

- ß  = 0.5 

- δ  = 0.3333  
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Epidemic Algorithms 

! Epicast 
-  new information is a rumor 
-  as long the rumor is new it is distributed 
-  Is the rumor old, it is known to all servers 

! Epidemic Algorithm [Demers et al 87] 
-  distributes information like a virus 
-  robust alternative to BFS or flooding 

! Communication method 
- Push & Pull, d.h. infection after log3 n + O(log log n) rounds 

with high probability 

! Problem: 
-  growing number of infections increases comunication effort 
-  trade-off between robustness and communication overhead 
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SI-Model for Graphs 

! Given a contact graph G=(V,E) 
-  n: number of nodes 
-  I(t) := number of infected nodes in round t 
-  i(t) = I(T)/n 
- S(t) := number of susceptible nodes in round t 

•  I(t)+S(t)=n  

-  s(t) = S(T)/n 

!  Infection: 
-  If u is infected in round t and (u,v) ∈ E, then v is infected in round t+1  

! Graph determines epidemics 
! Complete graph: 

-  1 time unit until complete infection 

! Line graph 
-  n-1 time units until complete infection 
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Random Call Model 

!  In each round a new contact graph Gt=(V,Et): 
- Each node in Gt has out-degree 1 

•  chooses random node v out of V 

!  Infection models: 
- Push-Model 

•  if u is infected and (u,v) ∈ Et, then v is infected in the next 
round 

- Pull-Modell:  
•  if v is infected and (u,v) ∈ Et, then u is infected in the next 

round 
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Push Model 
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Push Model 
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Push Model 
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Push Model 
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Push Model 
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Push Model 
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Push Model 
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Push Model 
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Push Model 
Start Phase 

! 3 cases for an infected node 
1.  it is the only one infecting a new node 
2.  it contacts an already infected node 
3.  it infects together with other infected nodes a new node 

•  this case is neglected in the prior deterministic case 

-  Probability for 1st or 3rd case  s(t) = 1-i(t) 
-  Probability for 2nd case i(t) 
-  Probability for 3rd case is at most i(t) 

•  since at most  i(t) are infected 
! Probability of infection of a new node, if i(t) ≤ s(t)/2:  

-  at least 1 – 2i(t) 
! E[i(t+1)]  ≥  i(t) + i(t)(1 – 2 i(t)) = 2i(t) -2i(t)2  ≈  2 i(t)  



!  If i(t) ≤ s(t)/2: 

-  E[i(t+1)]  ≥  2 i(t) – 2i(t)2  ≈  2 i(t)  

!  Start phase: I(t) ≤ 2 c (ln n)2 

-  Variance of i(t+1) relatively large 

-  Exponential growth starts after some O(1) with high probability 

!  Exponential growth:   
I(t) ∈ [2 c (ln n)2, n/(log n)] 

-  Nearly doubling of infecting nodes with high probability, i.e. 1-O(n-c) 

!  Proof by Chernoff-Bounds 

-  For independent random variables Xi∈{0,1} with 

-  and any 

-  Let  δ = 1/(ln n)  

-  E[Xm]  ≥  2 c (ln n)3 

-  Then δ2 E[Xm] /2 ≥ c ln n 

-  This implies 
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Push Model 
 Start phase & Exponential Growth 
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Push Model 
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Pull Model 

i(t) 
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