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Peer-to-Peer Networking Facts

! Hostile environment 
- Legal situation 
- Egoistic users 
- Networking 

• ISP filter Peer-to-Peer Networking traffic 
• User arrive and leave 
• Several kinds of attacks 
• Local system administrators fight peer-to-peer networks 

! Implication 
- Use stable robust network structure as a backbone 
- Napster: star 
- CAN: lattice 
- Chord, Pastry, Tapestry: ring + pointers for lookup 
- Gnutella, FastTrack: chaotic “social” network 

! Idea: Use a Random d-regular Network



Why Random Networks ?

! Random Graphs ... 
- Robustness 
- Simplicity 
- Connectivity 
- Diameter 
- Graph expander 
- Security 

! Random Graphs in Peer-to-Peer 
networks:  
- Gnutella 
- JXTApose
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Dynamic Random Networks ...

!  Peer-to-Peer networks are highly dynamic ... 
-  maintenance operations are needed to preserve 

properties of random graphs 
-  which operation can maintain (repair) a random 

digraph?
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Desired properties:

Soundness Operation remains in domain 

(preserves connectivity and out-degree)

Generality every graph of the domain is reachable 

does not converge to specific small graph set

Feasibility can be implemented in a P2P-network

Convergence Rate probability distribution converges quickly



Simple Switching

!  Simple Switching  
-  choose two random edges  

• {u1,u2} ∈ E, {u3,u4} ∈ E 

- such that {u1,u3}, {u2,u4} ∉ E                                   
•  add edges {u1,u3}, {u2,u4} to E  
•  remove {u1,u2} and {u3,u4} from E 

! McKay, Wormald, 1990 
- Simple Switching converges to uniform 

probability distribution of random network 
- Convergence speed: 

•  O(nd3) for d ∈ O(n1/3) 

! Simple Switching cannot be used in 
Peer-to-Peer networks 

- Simple Switching disconnects the graph 
with positive probability 

- No network operation can re-connect 
disconnected graphs
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Necessities of Graph Transformation

! Problem: Simple Switching 
does not preserve connectivity 

! Soundness 
- Graph transformation remains in 

domain 
- Map connected d-regular graphs 

to connected d-regular graphs 

! Generality 
- Works for the complete domain 

and can lead to any possible 
graph 

! Feasibility 
- Can be implemented in P2P 

network 

! Convergence Rate 
- The probability distribution 

converges quickly

Simple-Switching

Graphs
Undirected 

Graphs

Soundness ?

Generality ☇
Feasibility ✔

Convergence ✔



Directed Random Graphs

! Peter Mahlmann, Christian Schindelhauer 
- Distributed Random Digraph Transformations for Peer-

to-Peer Networks, 18th ACM Symposium on Parallelism 
in Algorithms and Architectures, Cambridge, MA, USA. 
July 30 - August 2, 2006
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Directed Graphs

Push Operation: 
1.Choose random node u 
2.Set v to u 
3.While a random event with p= 1/h appears 

a) Choose random edge starting at v and  
ending at v‘ 

b) Set v to v‘ 
3.Insert edge (u,v) 
4.Remove random edge starting at v

Pull Operation: 
1.Choose random node u 
2.Set v to u 
3.While a random event with p= 1/h appears 

a) Choose random edge starting at v and ending 
at v‘ 

b) Set v to v‘ 
3.Insert edge (v,u) 
4.Remove random edge starting at v‘
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Simulation of Push-Operations

Start situation 

Parameter:  
n = 32 nodes 
out-degree d = 4 
Hop-distance h = 3

9



1 Iteration Push ...

10



10 Iterations Push ...
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20 Iterations von Push ...
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30 Iterations Push ...
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40 Iterations Push ...
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50 Iterations Push ...
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70 Iterations Push ...

Client-Server 
rediscovered
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Simulation of Pull-Operation ...

Start situation 

Parameter:  
n = 32 nodes 
outdegree d = 4 
hop distance h = 3

17



1 Iteration Pull ...
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10 Iterations Pull ...
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20 Iterations Pull ...
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30 Iterations Pull ...
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40 Iterationen Pull ...
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50 Iterations Pull ...
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500 Iterations Pull ...
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5000 Iterations Pull ...
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Combination of Push and Pull

Pus
h

Pull
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Simulation of Push&Pull-Operations ...

Same start situation 

Parameters 
n = 32 nodes 
degree d = 4 
hop-distance h = 3 

but 
1.000.000 iterations
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Pointer-Push&Pull for Multi-Digraphs
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Pointer-Push&Pull: 

• choose random node v1 ∈ V 
• do random walk v1, v2, v3 
• delete edges (v1,v2) and (v2,v3) 
• add edges (v2,v1) and (v1,v3)

• obviously: 
• preserves connectivity of G 
• does not change out-degrees 

➡ Pointer-Push&Pull is sound for the domain of  
out-regular connected multi-digraphs



Pointer-Push&Pull: Reachability
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 Lemma  A series of random Pointer-Push&Pull operations can transform an arbitrary 
connected out-regular multi-digraph, to every other graph within this domain



Pointer-Push&Pull: Uniformity
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What is the stationary prob. distribution generated by Pointer-Push&Pull? 
• depends on random walk

example: node oriented random walk 

- choose random neighboring node with p=1/d respectively 
- due to multi-edges possibly less than d neighbors 
- if no node was chosen operation is canceled

P [G PP�! G0] = P [G0 PP�! G]
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Uniform Generality
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Theorem: Let G’ be a d-out-regular connected multi-digraph with n nodes. Applying 
Pointer-Push&Pull operations repeatedly will construct every d-out-regular 
connected multi-digraph with the same probability in the limit, i.e.

lim
t!1

P [G0 t! G] =
1

|MDGn,d|



Feasibility ...
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 A Pointer-Push&Pull operation in the network ...
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(2) v2 replaces (v2,v3) by (v2,v1) and sends ID of v3 to v1

v
1

v
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v
3

• only 2 messages between two 
nodes, carrying the information 
of one edge only 

• verification of neighborhood is 
mandatory in dynamic networks 

⇒ combine neighbor-

check with Pointer-
Push&Pull



Properties of Pointer-Push&Pull
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• strength of Pointer-Push&Pull is its simplicity 

• generates truly random digraphs 

• the price you have to pay: multi-edges 

Open Problems: 

• convergence rate is unknown, conjecture  
O(dn log n) 

•is there a similar operation for simple digraphs?

Pointer-Push&Pull

Graphs
Directed 

Multigraphs

Soundness ✔

Generality ✔

Feasibility ✔

Convergence ?



hub edge

flipping edges

The 1-Flipper (F1)

!  The operation  
- choose random edge {u2,u3} ∈ E, 

• hub edge 
- choose random node u1 ∈ N(u2)  

• 1st flipping edge 
-  choose random node u4 ∈ N(u3) 

• 2nd flipping edge 
-  if {u1,u3}, {u2,u4} ∉ E 

• flip edges, i.e. 
• add edges {u1,u3}, {u2,u4} to E  
• remove {u1,u2} and {u3,u4} from E



! Soundness: 

- 1-Flipper preserves d-regularity 
• follows from the definition 

- 1-Flipper preserves connectivity 

• because of the hub edge 
! Observation: 

- For all d > 2 there is a connected d-regular graph G 
such that 

- For all d ≥ 2 and for all d-regular connected graphs at 
least one 1-Flipper-operation changes the graph with 
positive probability 

• This does not imply generality

1-Flipper is sound



! Lemma (symmetry):   
- For all undirected regular graphs G,G’:

1-Flipper is symmetric



1-Flipper provides generality

! Lemma (reachability):  
- For all pairs G,G’ of connected d-regular graphs there 

exists a sequence of 1-Flipper operations transforming 
G into G’.



! Theorem (uniformity):  
- Let G0 be a d-regular connected graph with n nodes and  

d > 2. Then in the limit the 1-Flipper operation 
constructs all connected d-regular graphs with the same 
probability:

1-Flipper properties: uniformity



1-Flipper properties: Expansion

! Definition (edge boundary):  
- The edge boundary δS of a set S ⊂ V is the set of edges with exactly 

one endpoint in S. 

! Definition (expansion):   
A graph G=(V,E) has expansion β > 0  

- if for all node sets S with |S| ≤ |V|/2: 
- |δS| ≥ β |S| 

! Since for d ∈ ω(1) a random connected d-regular graph is a 
θ(d) expander asymptotically almost surely (a.a.s: in the limit 
with probability 1), we have 

! Theorem:  
- For d > 2 consider any d-regular connected Graph G0. Then in the limit 

the 1-Flipper operation establishes an expander graph after a sufficiently 
large number of applications a.a.s.



Flipper
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‣ Flipper involves 4 nodes 

‣ Generates truly random graphs 

‣ Open Problems: 

• convergence rate is 
polynomial 

•conjecture: O(dn log n)

Flipper

Graphs Undirected 
Graphs

Soundness ✔

Generality ✔

Feasibility ✔

Convergence ?



The k-Flipper (Fk)

!  The operation  
- choose random node 
- random walk P‘ in G 
- choose hub path with nodes 

- {ul, ur}, {ul+1 ,ur+1} occur only once in P’ 

-  if {ul, ur}, {ul+1 ,ur+1} ∉ E 

-  add edges {ul, ur}, {ul+1,ur+1} to E  
-  remove {ul,ul+1} and {ur,ur+1} from E

hub path

flipping edges



k-Flipper: Properties ...

! k-Flipper preserves connectivity and d-regularity 
- proof analogously to the 1-Flipper 

! k-Flipper provides reachable, 
- since the 1-Flipper provides reachability 
- k-Flipper can emulate 1-Flipper 

! But: k-Flipper is not symmetric: 
- a new proof for expansion property is needed



Concurrency ...

! In a P2P-network there 
are concurrent Flipper 
operations 
- No central coordination 
- Concurrent Flipper 

operations can speed up 
the convergence process 

- However concurrent 
Flipper operations can 
disconnect the network



k-Flipper

! Convergence only proven for too long 
paths 

- Operation is not feasible then. 

- Does k-Flipper quickly converge 
for small k? 

! Open problem: 

- Which k is optimal?
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k-Flipper 
large k

k-Flipper 
small k

Graphs
Undirected 

Graphs
Undirected 

Graphs

Soundness ✔ ✔

Generality ✔ ✔

Feasibility ☇ ✔

Convergen
ce ✔ ?
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All Graph Transformation

‣ Open Problems 
• Conjecture: Flipper converges in 

after O(dn log n) operations to a 
truly random graph 

• Conjecture: k-Flipper converges 
faster, but involves more nodes 
and flags 

• Conjecture: k-Flipper does not 
pay out 

‣ Empirical Simulations 
• Estimate expansion by 

eingenvalue gap 

• Estimate eigenvalue gap by 
iterated multiplication of a start 
vector

Simple-
Switching

Flipper Pointer-
Push&Pull

k-Flipper 
small k

k-Flipper 
large k

Graphs Undirected 
Graphs

Undirected 
Graphs

Directed 
Multigraphs

Undirected 
Graphs

Undirected 
Graphs

Soundness ? ✔ ✔ ✔ ✔

Generality ☇ ✔ ✔ ✔ ✔

Feasibility ✔ ✔ ✔ ✔ ☇
Conver-
gence ✔ ? ? ? ✔



! Ring with neighbor 
edges 

! Torus 
! Ring of cliques

Start Graphs

46



Flipper 
Influence of the Start Graph
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Development of Expansion
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Development of Expansion

Initial Phase
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Expansion, Diameter & Triangles
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k-Flipper 
Start Graph: Ring of Cliques
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Convergence of Flipper 
Varying Degree
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All Graph Transformation

Simple-
Switching

Flipper Pointer-
Push&Pull

k-Flipper 
small k

k-Flipper 
large k

Graphs Undirected 
Graphs

Undirected 
Graphs

Directed 
Multigraphs

Undirected 
Graphs

Undirected 
Graphs

Soundness ? ✔ ✔ ✔ ✔

Generality ☇ ✔ ✔ ✔ ✔

Feasibility ✔ ✔ ✔ ✔ ☇
Convergence ✔ ✔ ? ✔ ✔



Good Peer-to-Peer-Operations

Pus
h

Pull
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