

Peer-to-Peer Networks 09 Random Graphs for Peer-to-Peer-Networks

ZW

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

Peer-to-Peer Networking Facts

- Hostile environment
 - Legal situation
 - Egoistic users
 - Networking
 - ISP filter Peer-to-Peer Networking traffic
 - User arrive and leave
 - Several kinds of attacks
 - Local system administrators fight peer-to-peer networks
- Implication
 - Use stable robust network structure as a backbone
 - Napster: star
 - CAN: lattice
 - Chord, Pastry, Tapestry: ring + pointers for lookup
 - Gnutella, FastTrack: chaotic "social" network
- Idea: Use a Random d-regular Network

2

Why Random Networks?

- Random Graphs ...
 - Robustness
 - Simplicity
 - Connectivity
 - Diameter
 - Graph expander
 - Security

- Random Graphs in Peer-to-Peer networks:
 - Gnutella
 - JXTApose

A Dynamic Random Networks ...

- Peer-to-Peer networks are highly dynamic ...
 - maintenance operations are needed to preserve properties of random graphs
 - which operation can maintain (repair) a random digraph?

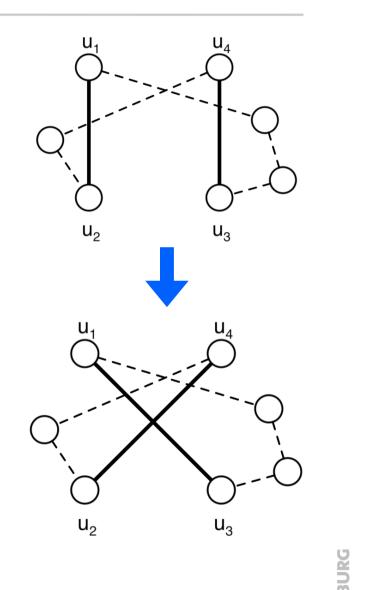
Desired properties:

Convergence Rate	probability distribution converges quickly	
Feasibility	can be implemented in a P2P-network	
7	does not converge to specific small graph set	
Generality	every graph of the domain is reachable	
Soundiness	(preserves connectivity and out-degree)	
Soundness	Operation remains in domain	

CoNe Freiburg

Simple Switching

- Simple Switching
 - choose two random edges
 - $\{u_1, u_2\} \in E, \{u_3, u_4\} \in E$
 - such that $\{u_1, u_3\}$, $\{u_2, u_4\} \not\in E$
 - add edges {u₁,u₃}, {u₂,u₄} to E
 - remove {u₁,u₂} and {u₃,u₄} from E
- McKay, Wormald, 1990
 - Simple Switching converges to uniform probability distribution of random network
 - Convergence speed:
 - $O(nd^3)$ for $d \in O(n^{1/3})$
- Simple Switching cannot be used in Peer-to-Peer networks
 - Simple Switching disconnects the graph with positive probability
 - No network operation can re-connect disconnected graphs



CoNe Freiburg

Necessities of Graph Transformation

	Simple-Switching
Graphs	Undirected Graphs
Soundness	?
Generality	<
Feasibility	
Convergence	

- Problem: Simple Switching does not preserve connectivity
- Soundness
 - Graph transformation remains in domain
 - Map connected d-regular graphs to connected d-regular graphs
- Generality
 - Works for the complete domain and can lead to any possible graph
- Feasibility
 - Can be implemented in P2P network
- Convergence Rate
 - The probability distribution converges quickly

6

JNI REIBURG

Directed Random Graphs

- Peter Mahlmann, Christian Schindelhauer
 - Distributed Random Digraph Transformations for Peerto-Peer Networks, 18th ACM Symposium on Parallelism in Algorithms and Architectures, Cambridge, MA, USA. July 30 - August 2, 2006

7

Directed Graphs

Push Operation:

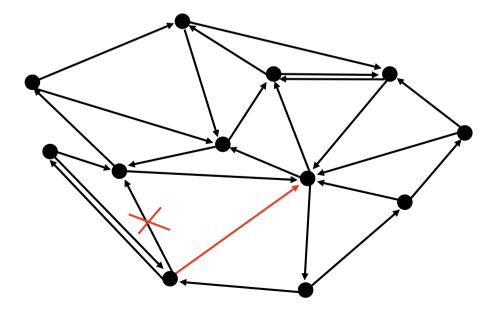
1.Choose random node u

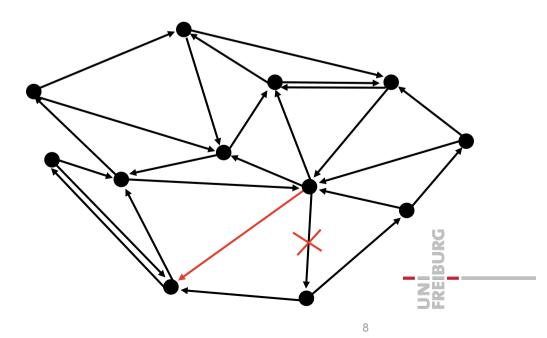
2.Set v to u

- 3. While a random event with p = 1/h appears
 - a) Choose random edge starting at *v* and ending at *v*
 - b) Set v to v'
- 3.Insert edge (u,v)
- 4.Remove random edge starting at v

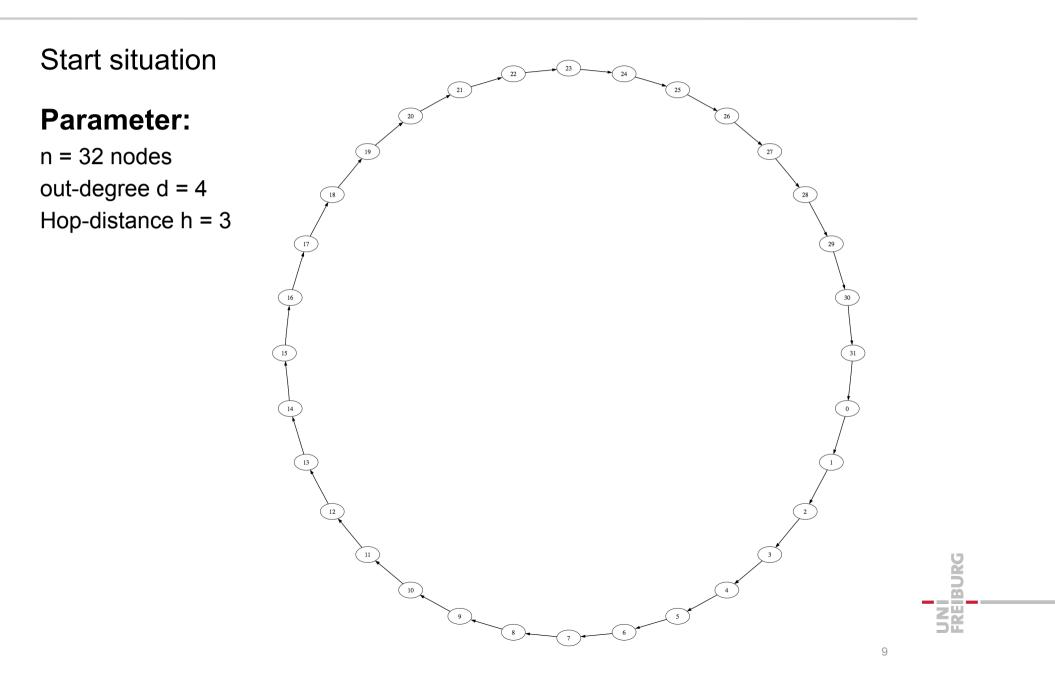
Pull Operation:

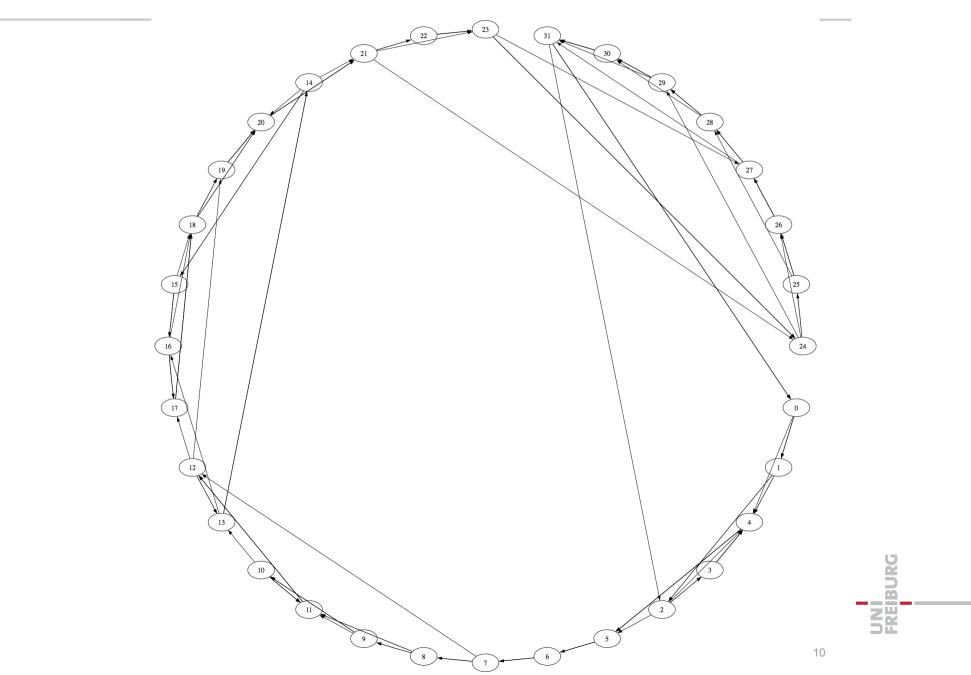
- 1.Choose random node u
- 2.Set v to u
- 3. While a random event with p = 1/h appears
 - a) Choose random edge starting at v and ending at v^{ι}
 - b) Set v to v'
- 3.Insert edge (v,u)
- 4.Remove random edge starting at v^{*}

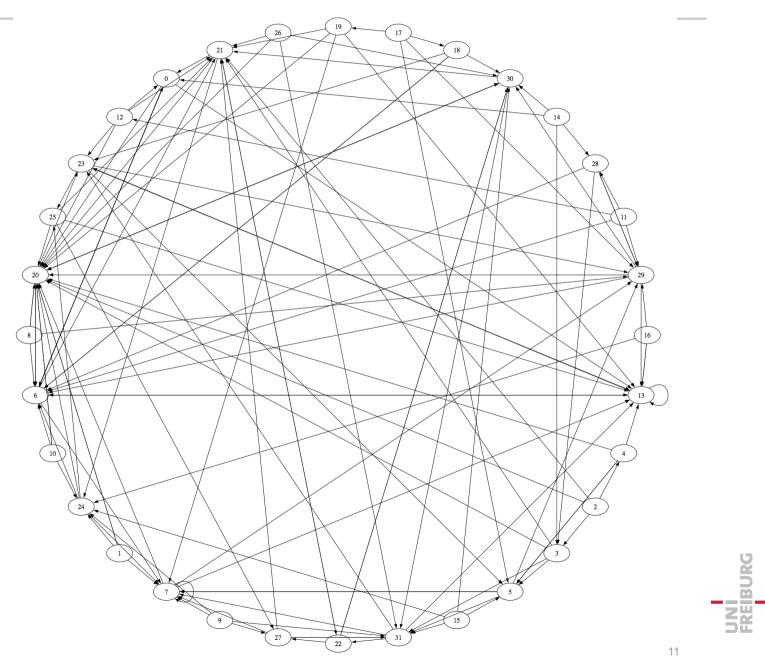


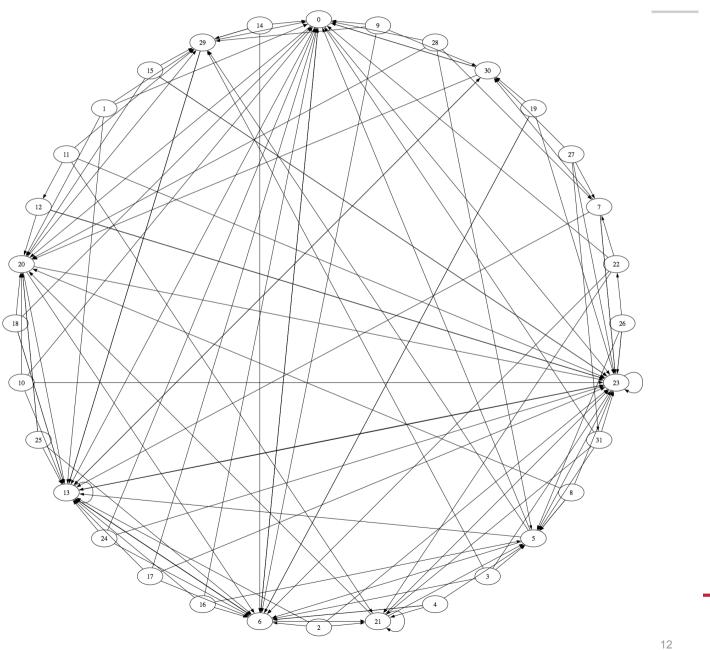


A Simulation of Push-Operations Freiburg

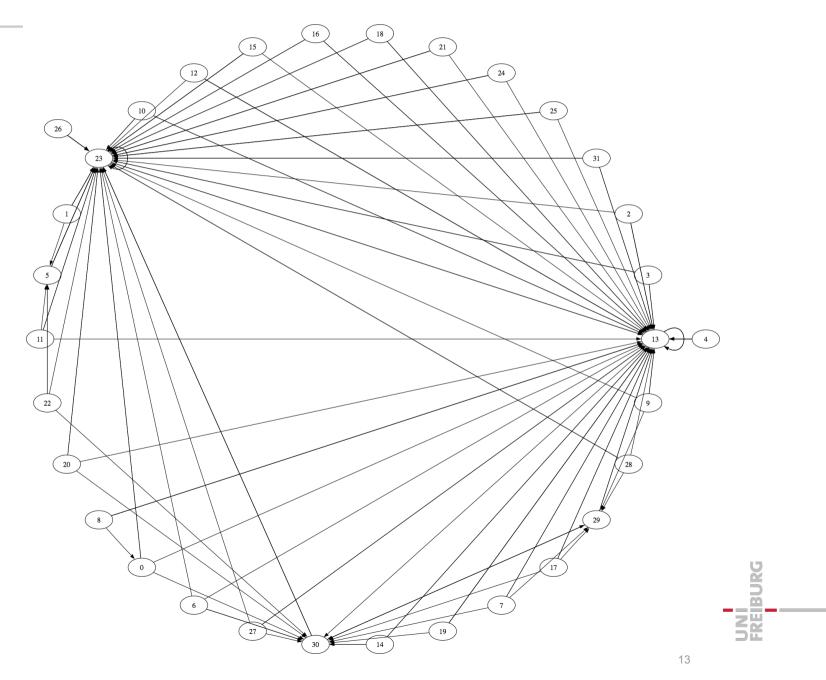




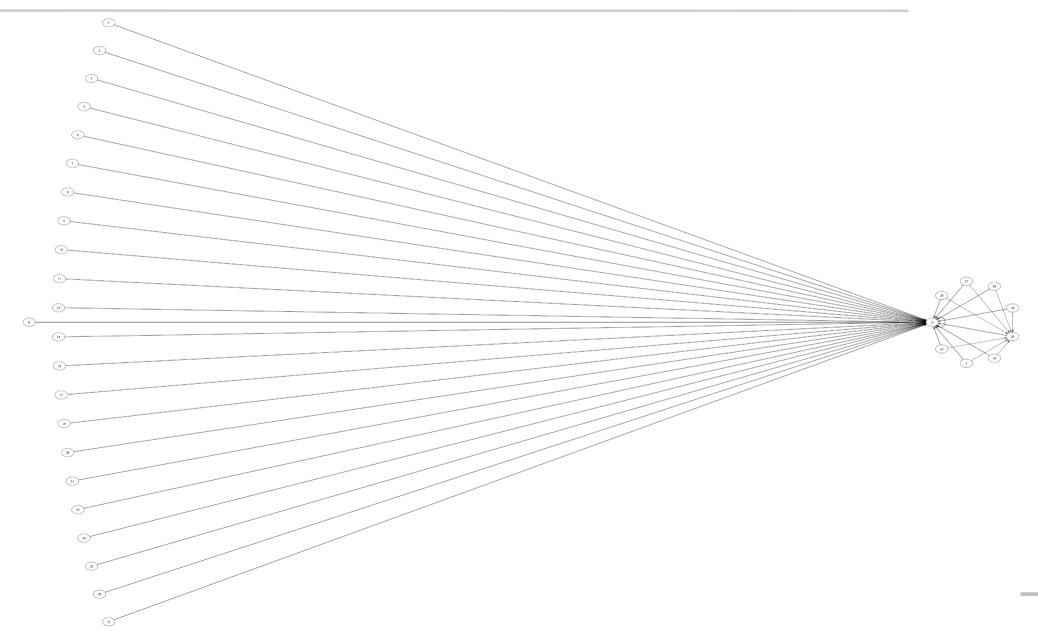




30 Iterations Push ... CoNe Freiburg

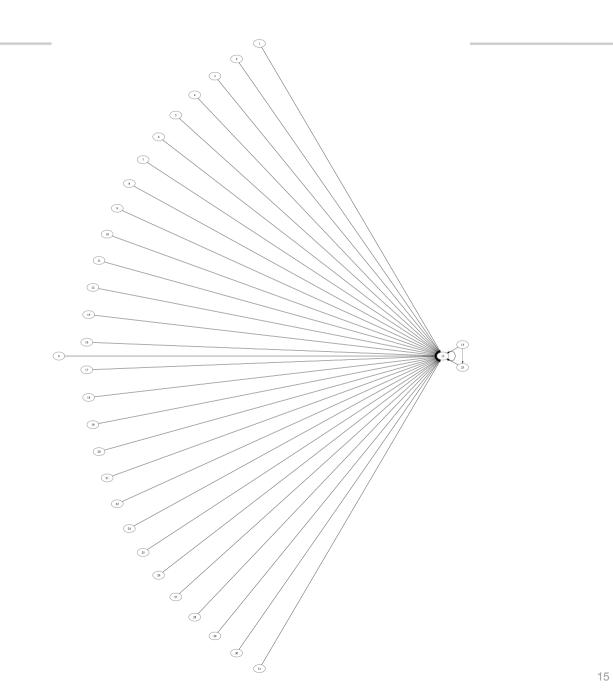


40 Iterations Push ... CoNe Freiburg

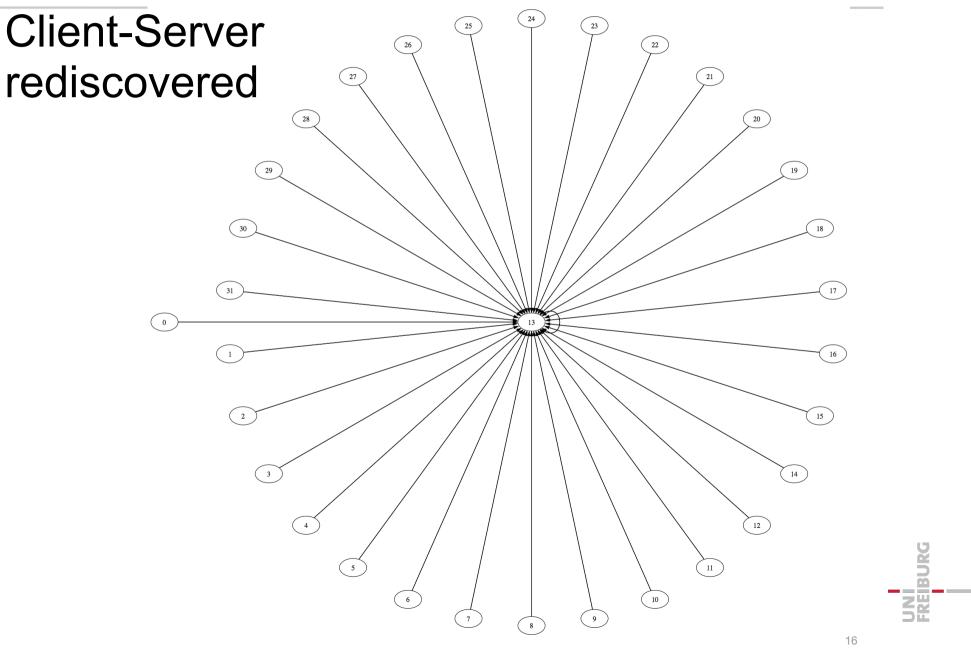


50 Iterations Push ...

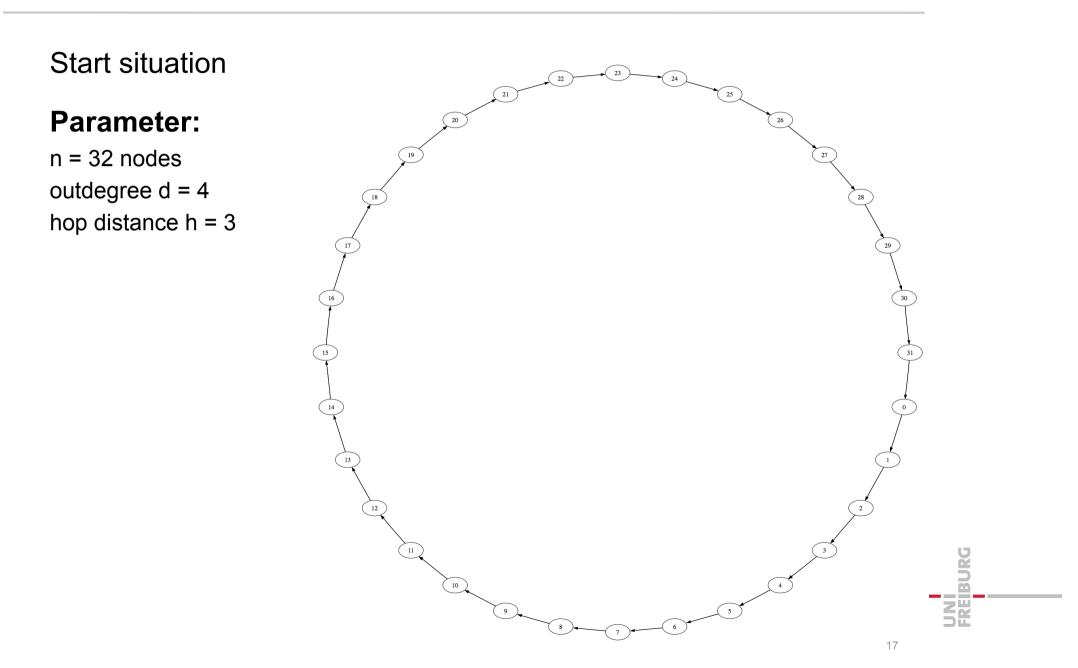
CoNe Freiburg

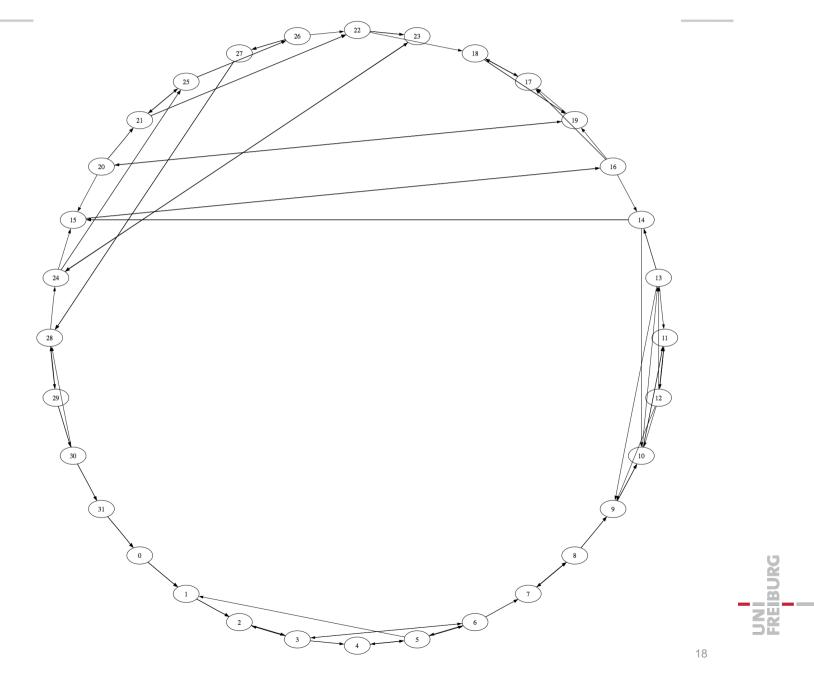


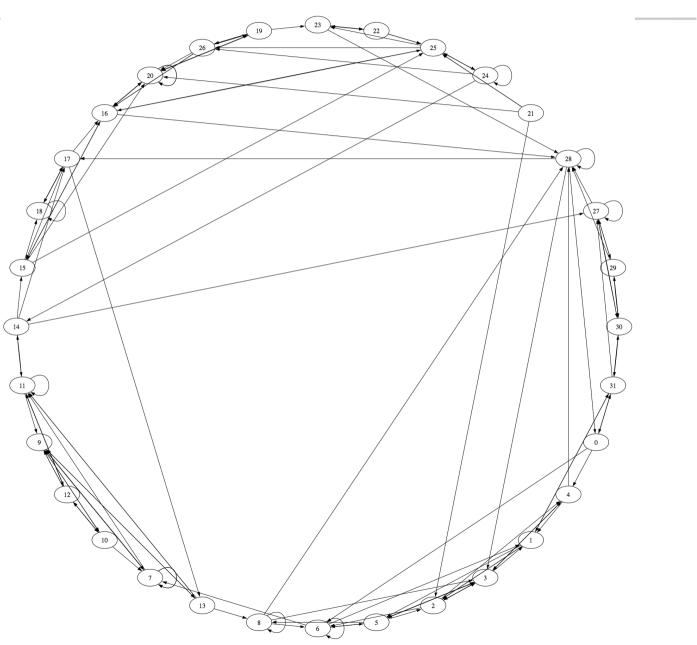
UNI FREIBURG



A Simulation of Pull-Operation ...

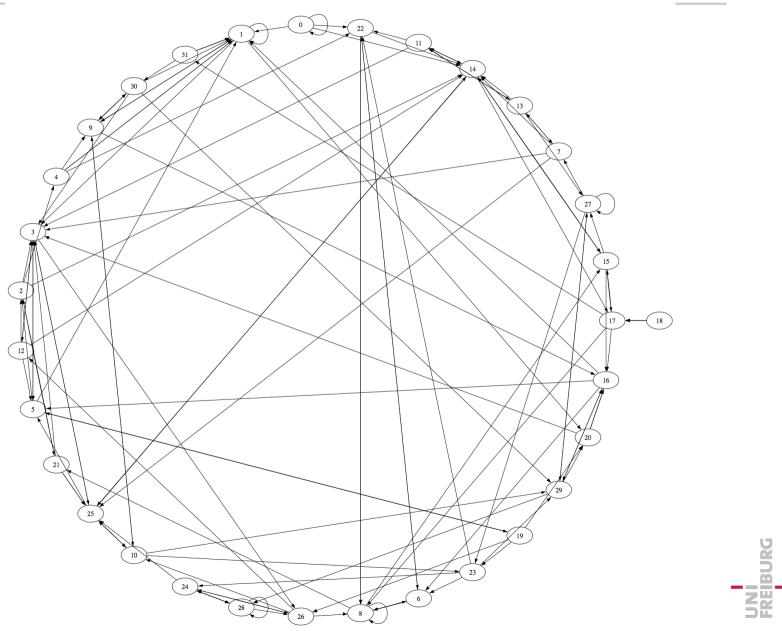






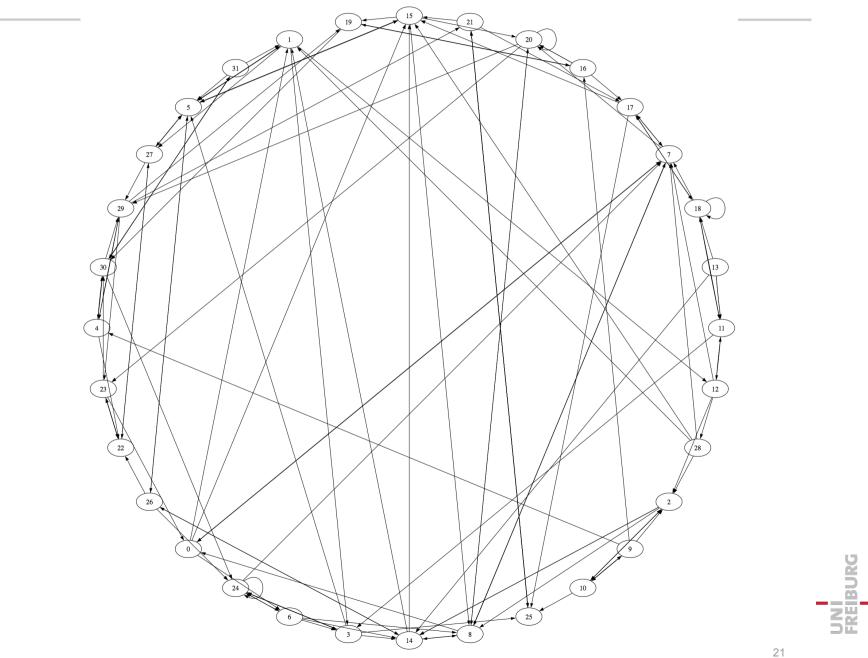
FREIBURG

20 Iterations Pull ... CoNe Freiburg

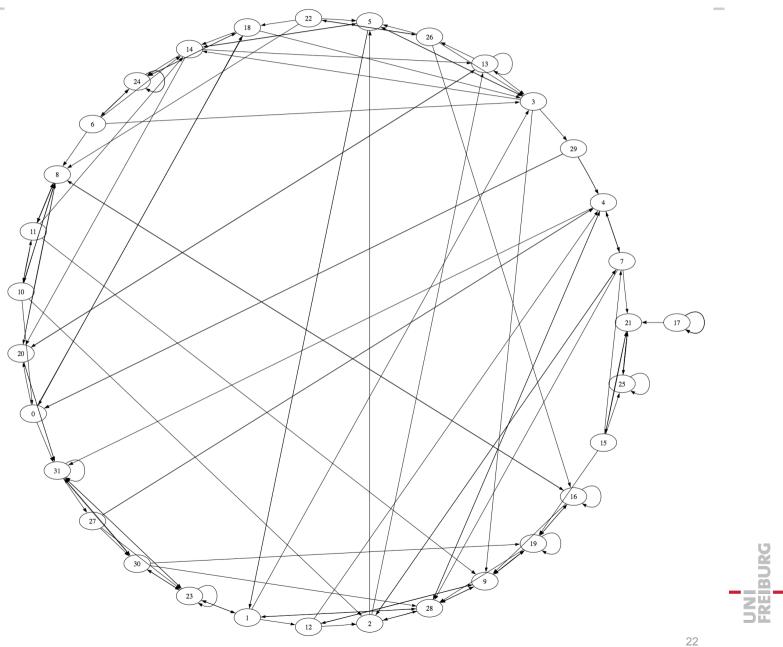


20

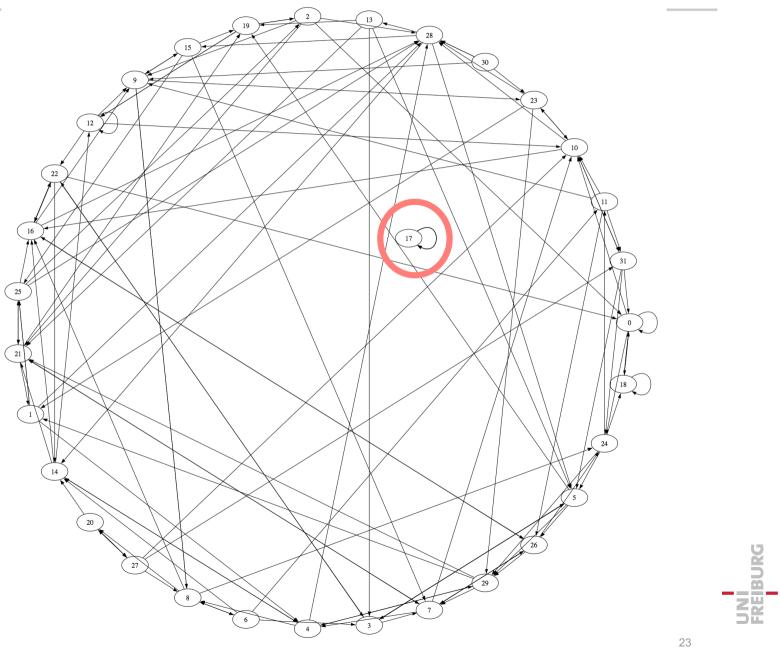
30 Iterations Pull ...

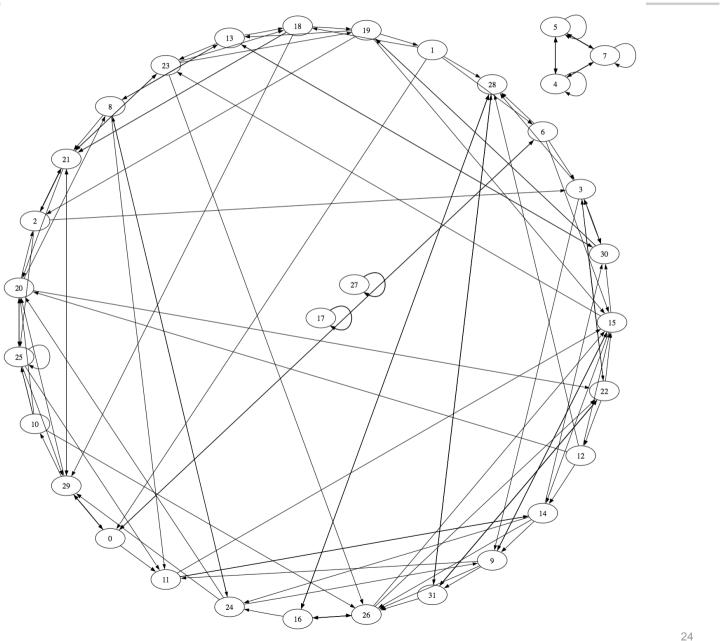


40 Iterationen Pull ... CoNe Freiburg

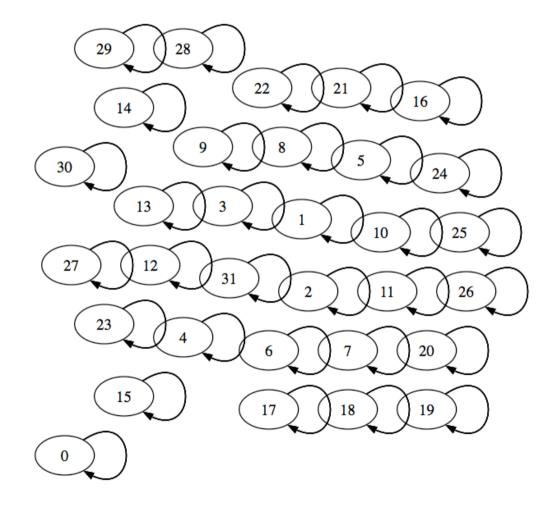


50 Iterations Pull ... CoNe Freiburg



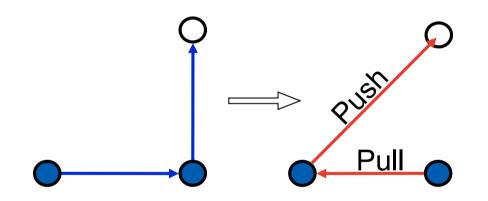


UNI FREIBURG



FREIBURG

A Combination of Push and Pull Freiburg

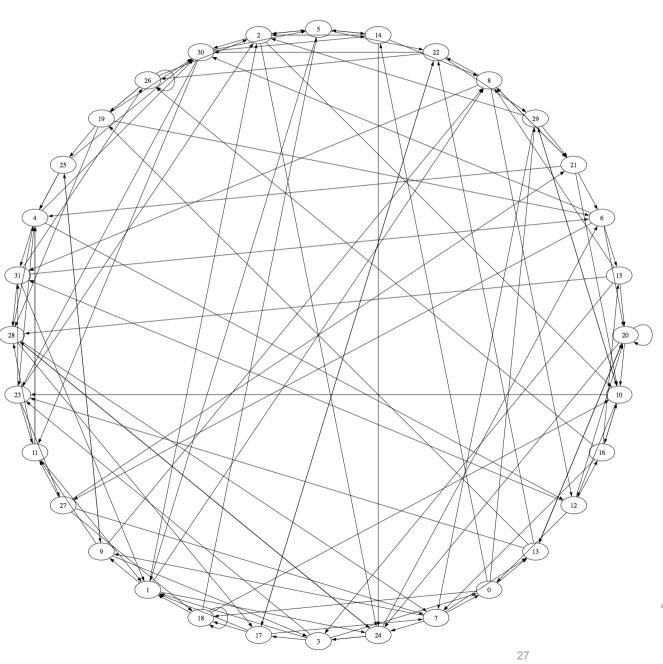


A Simulation of Push&Pull-Operations ...

Same start situation

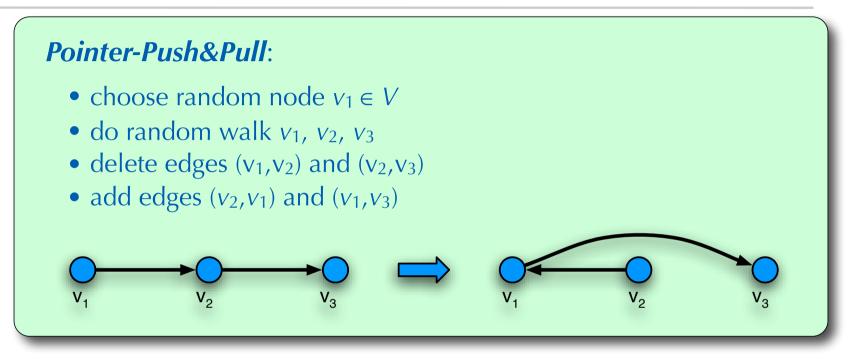
Parameters n = 32 nodes degree d = 4 hop-distance h = 3

but 1.000.000 iterations



CoNe Freiburg

Pointer-Push&Pull for Multi-Digraphs

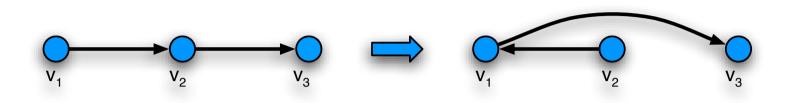


- obviously:
 - preserves connectivity of *G*
 - does not change out-degrees
- Pointer-Push&Pull is **sound** for the domain of out-regular connected multi-digraphs

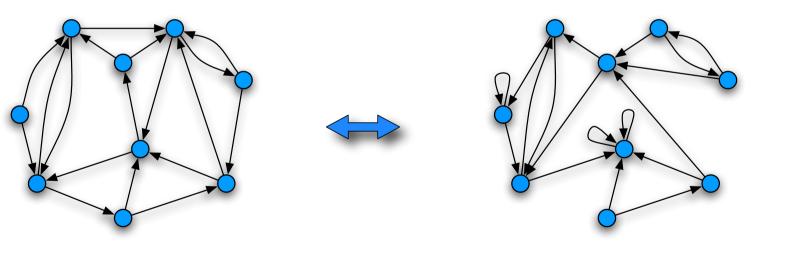
28

REIBURG

A Pointer-Push&Pull: Reachability Freiburg



Lemma A series of random Pointer-Push&Pull operations can transform an arbitrary connected out-regular multi-digraph, to every other graph within this domain



A Pointer-Push&Pull: Uniformity Freiburg

What is the stationary prob. distribution generated by Pointer-Push&Pull?

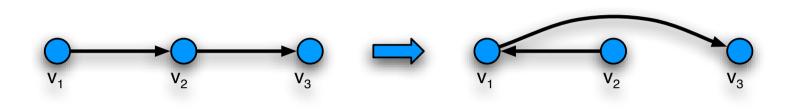
• depends on random walk

example: node oriented random walk

- choose random neighboring node with p=1/d respectively
- due to multi-edges possibly less than d neighbors
- if no node was chosen operation is canceled

$$P[G \xrightarrow{\mathcal{PP}} G'] = P[G' \xrightarrow{\mathcal{PP}} G]$$

Uniform Generality CoNe Freiburg

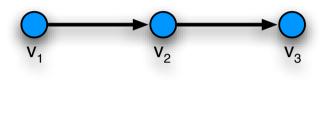


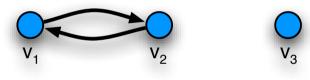
Theorem: Let G' be a d-out-regular connected multi-digraph with n nodes. Applying Pointer-Push&Pull operations repeatedly will construct every d-out-regular connected multi-digraph with the same probability in the limit, i.e.

$$\lim_{t \to \infty} P[G' \xrightarrow{t} G] = \frac{1}{|\mathcal{MDG}_{n,d}|}$$

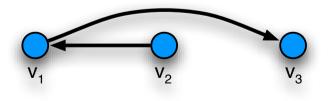
Feasibility ... CoNe Freiburg

A Pointer-Push&Pull operation in the network ...





(2) v_2 replaces (v_2 , v_3) by (v_2 , v_1) and sends ID of v_3 to v_1



- only 2 messages between two nodes, carrying the information of one edge only
- verification of neighborhood is mandatory in dynamic networks
 - ⇒ combine neighbor-

check with Pointer-Push&Pull

JNI Reiburg

Properties of Pointer-Push&Pull Freiburg

	Pointer-Push&Pull
Graphs	Directed Multigraphs
Soundness	
Generality	
Feasibility	
Convergence	?

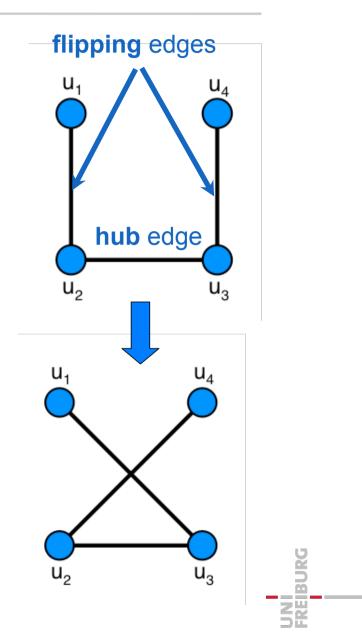
CoNe

- strength of Pointer-Push&Pull is its **simplicity**
- generates truly random digraphs
- the price you have to pay: multi-edges

n Problems:

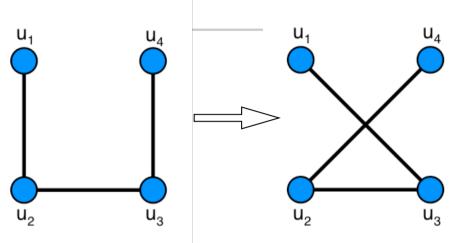
- convergence rate is unknown, conjecture $O(dn \log n)$
- s there a similar operation for simple digraphs?

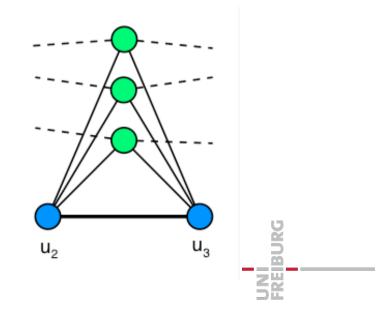
- The operation
 - choose random edge $\{u_2,u_3\}\in E,$ hub edge
 - choose random node u₁ ∈ N(u₂)
 1st flipping edge
 - choose random node $u_4 \in N(u_3)$
 - 2nd flipping edge
 - if {u₁,u₃}, {u₂,u₄} ∉ E
 - flip edges, i.e.
 - add edges $\{u_1, u_3\}$, $\{u_2, u_4\}$ to E
 - remove {u₁,u₂} and {u₃,u₄} from E

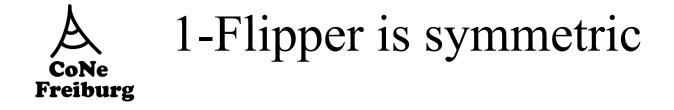


A 1-Flipper is sound Freiburg

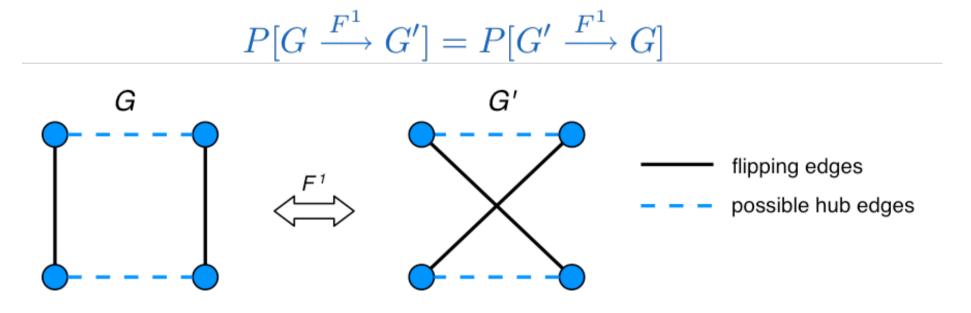
- Soundness:
 - 1-Flipper preserves d-regularity
 - follows from the definition
 - 1-Flipper preserves connectivity
 - because of the hub edge
- Observation:
 - For all d > 2 there is a connected d-regular graph G such that $G \xrightarrow{F^1} G \neq 0$
 - For all d ≥ 2 and for all d-regular connected graphs at least one 1-Flipper-operation changes the graph with positive probability
 - This does not imply generality







- Lemma (symmetry):
 - For all undirected regular graphs G,G':



A 1-Flipper provides generality Freiburg

- Lemma (reachability):
 - For all pairs G,G' of connected d-regular graphs there exists a sequence of 1-Flipper operations transforming G into G'.

A 1-Flipper properties: uniformity Freiburg

Theorem (uniformity):

 Let G₀ be a d-regular connected graph with n nodes and d > 2. Then in the limit the 1-Flipper operation constructs all connected d-regular graphs with the same probability:

$$\lim_{t \to \infty} P[G_0 \xrightarrow{t} G] = \frac{1}{|\mathcal{C}_{n,d}|}$$

1-Flipper properties: Expansion

- Definition (edge boundary):
 - The edge boundary δS of a set $S \subset V$ is the set of edges with exactly one endpoint in S.
- Definition (expansion):
 A graph G=(V,E) has expansion β > 0
 - if for all node sets S with $|S| \le |V|/2$:
 - $|\delta S| \ge \beta |S|$

CoNe Freiburg

- Since for d ∈ ω(1) a random connected d-regular graph is a θ(d) expander asymptotically almost surely (a.a.s: in the limit with probability 1), we have
- Theorem:
 - For d > 2 consider any d-regular connected Graph G0. Then in the limit the 1-Flipper operation establishes an expander graph after a sufficiently large number of applications a.a.s.

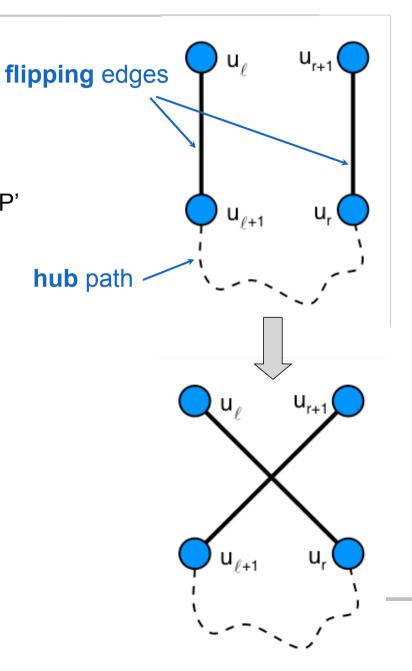
Flipper CoNe Freiburg

	Flipper
Graphs	Undirected Graphs
Soundness	
Generality	
Feasibility	
Convergence	?

- Flipper involves 4 nodes
- Generates truly random graphs
- Open Problems:
 - convergence rate is polynomial
 - conjecture: $O(dn \log n)$

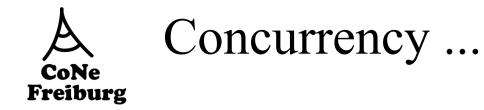
The k-Flipper (Fk)

- The operation
 - choose random node
 - random walk P' in G
 - choose hub path with nodes
 - {u_i, u_r}, {u_{i+1}, u_{r+1}} occur only once in P'
 - $\ \ \, if \ \{u_{l}, \ u_{r}\}, \ \{u_{l+1} \ , u_{r+1}\} \not\in E$
 - add edges {u_I, u_r}, {u_{I+1}, u_{r+1}} to E
 - remove $\{u_{l},u_{l+1}\}$ and $\{u_{r},u_{r+1}\}$ from E

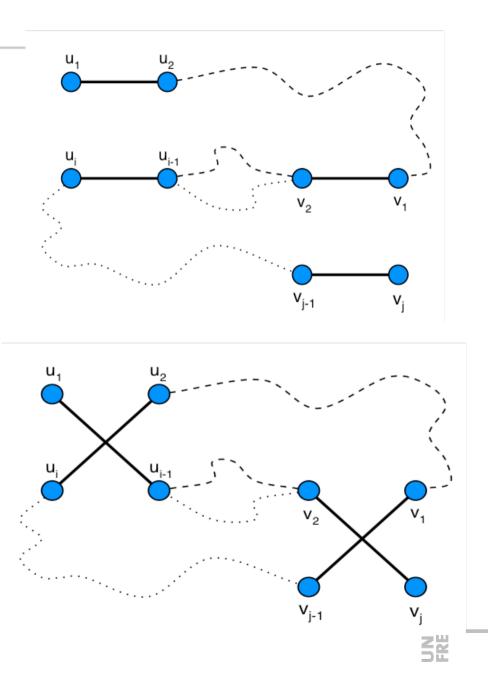


A k-Flipper: Properties ...

- k-Flipper preserves connectivity and d-regularity
 - proof analogously to the 1-Flipper
- k-Flipper provides reachable,
 - since the 1-Flipper provides reachability
 - k-Flipper can emulate 1-Flipper
- But: k-Flipper is not symmetric:
 - a new proof for expansion property is needed



- In a P2P-network there are concurrent Flipper operations
 - No central coordination
 - Concurrent Flipper operations can speed up the convergence process
 - However concurrent
 Flipper operations can disconnect the network



k-Flipper CoNe Freiburg

	k-Flipper large k	k-Flipper small k	
Graphs	Undirected Graphs	Undirected Graphs	
Soundness			
Generality			
Feasibility	$\boldsymbol{\zeta}$		
Convergen ce		?	

 Convergence only proven for too long paths

- Operation is not feasible then.
- Does k-Flipper quickly converge for small k?
- Open problem:
 - Which k is optimal?

CoNe Freiburg

All Graph Transformation

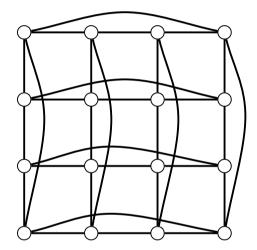
	Simple- Switching	Flipper	Pointer- Push&Pull	k-Flipper small k	k-Flipper large k
Graphs	Undirected Graphs	Undirected Graphs	Directed Multigraphs	Undirected Graphs	Undirected Graphs
Soundness	?				/
Generality	<		~		~
Feasibility	~	~			<
Conver- gence	/	?	?	?	/

Open Problems

- Conjecture: Flipper converges in after O(dn log n) operations to a truly random graph
- Conjecture: k-Flipper converges faster, but involves more nodes and flags
- Conjecture: k-Flipper does not pay out
- Empirical Simulations
- Estimate expansion by eingenvalue gap
- Estimate eigenvalue gap by iterated multiplication of a start vector

CoNe Freiburg

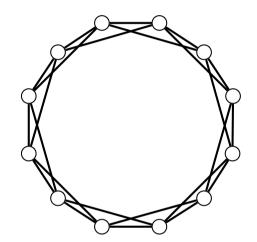
Start Graphs

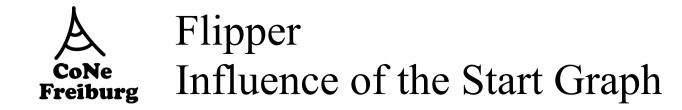


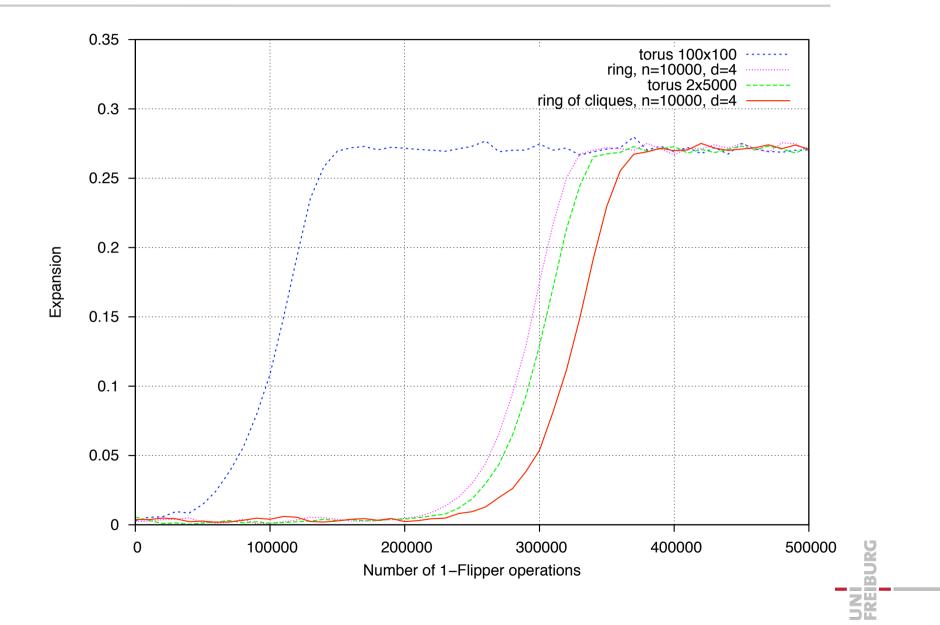
 Ring with neighbor edges

Torus

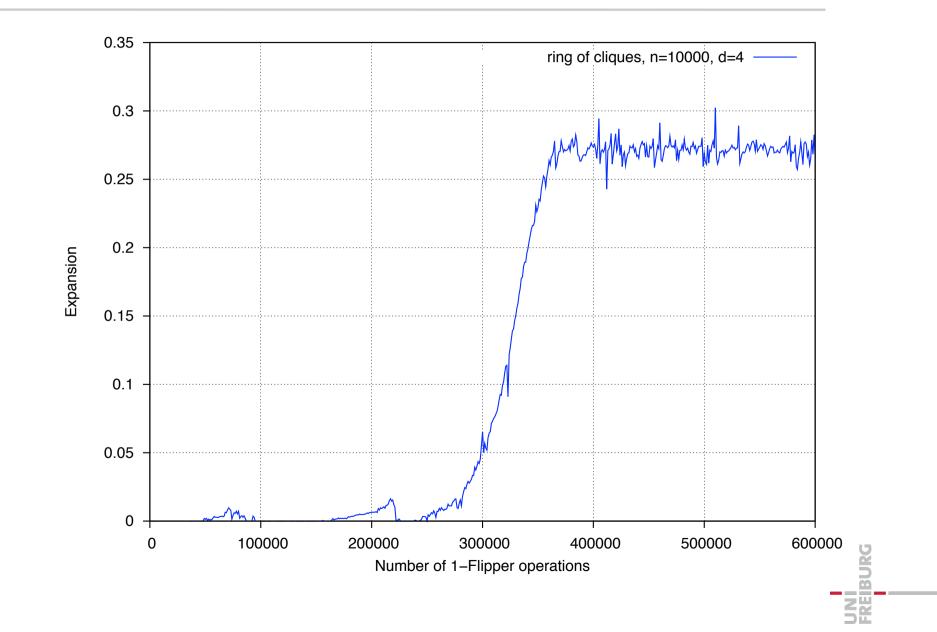
Ring of cliques



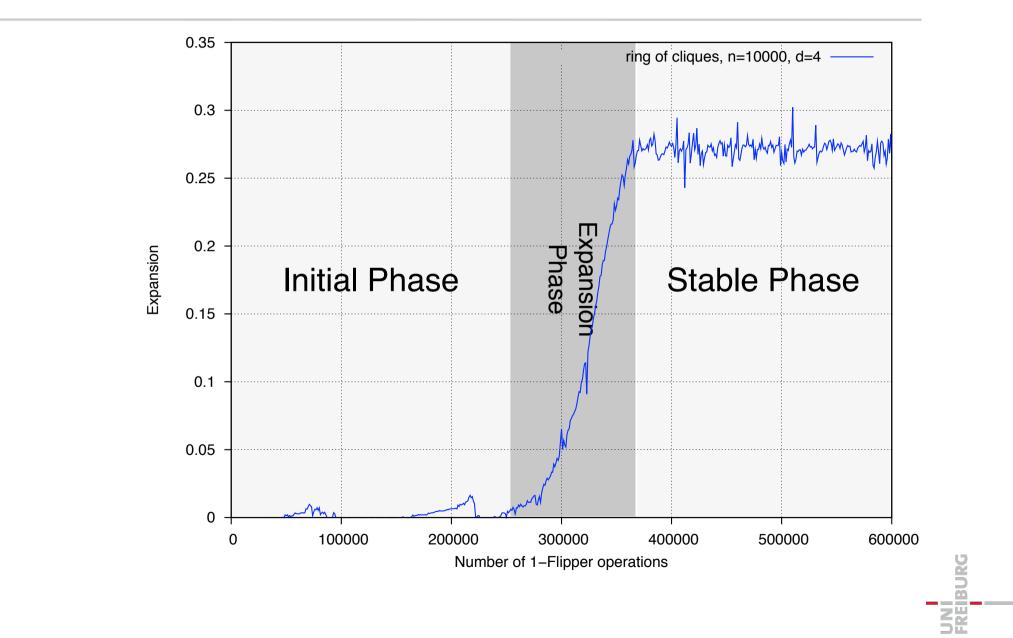




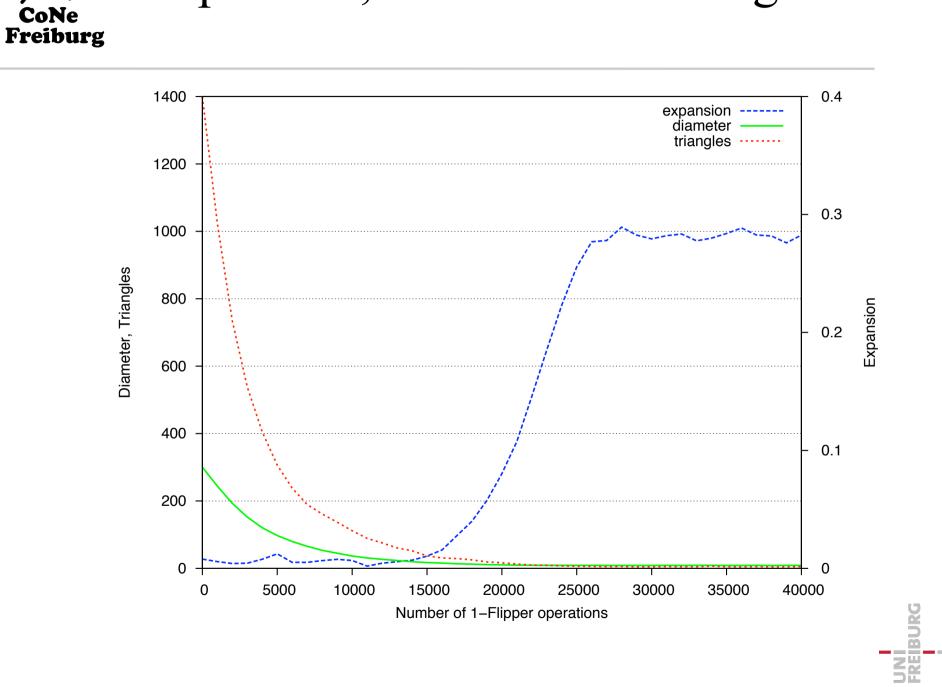
A Development of Expansion Freiburg



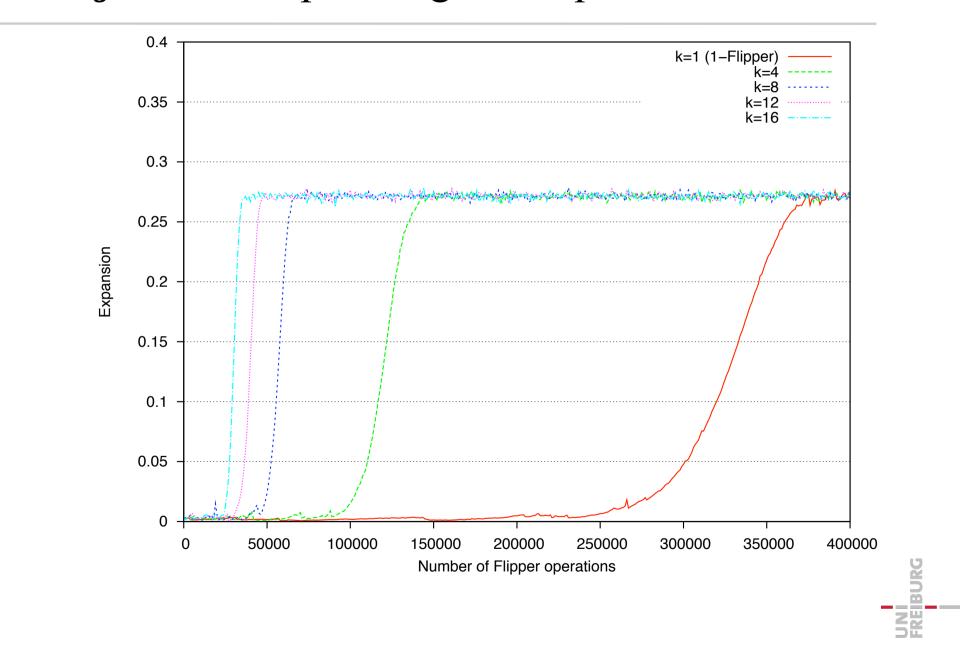
Development of Expansion **CoNe** Freiburg

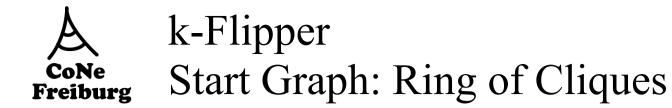


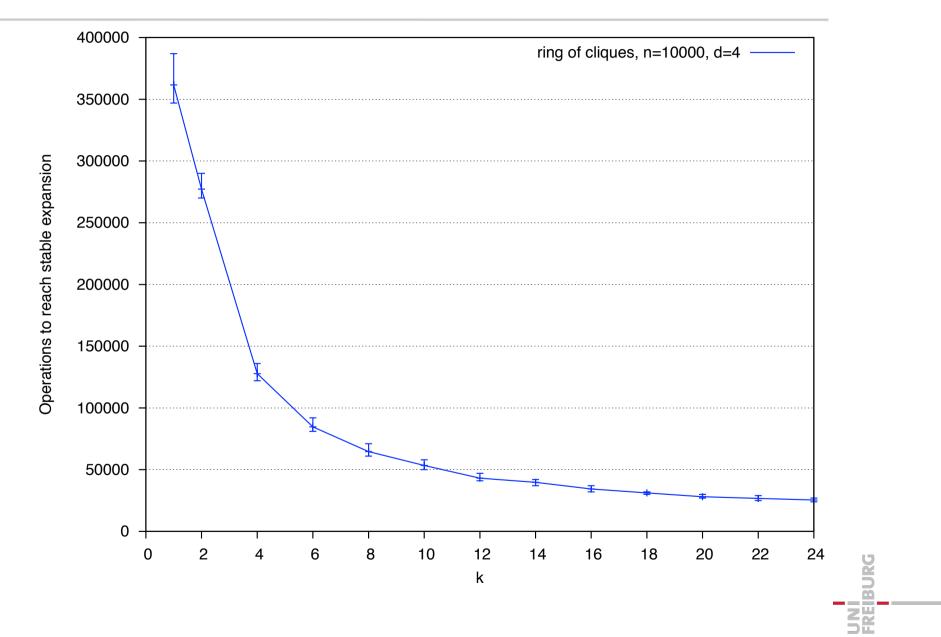
Expansion, Diameter & Triangles



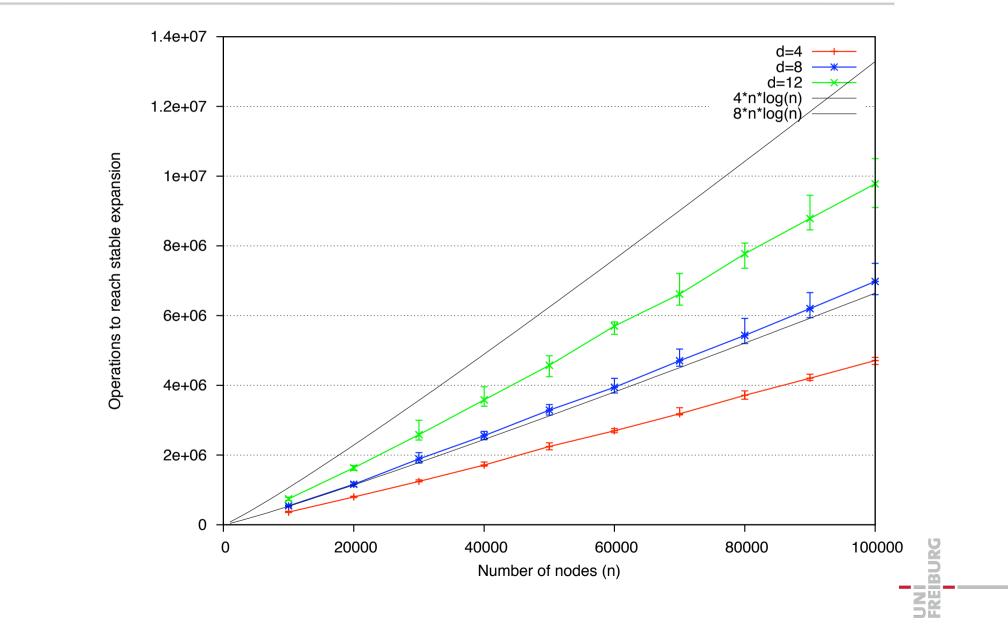
k-Flipper CoNe Freiburg Start Graph: Ring of Cliques



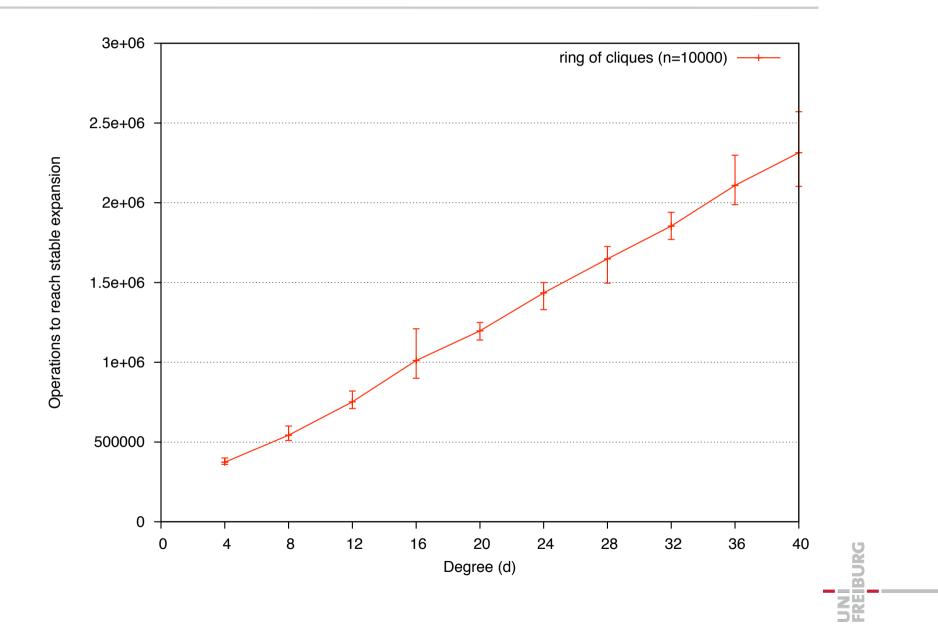




Convergence of Flipper CoNe Freiburg



Convergence of Flipper CoNe Freiburg Varying Degree



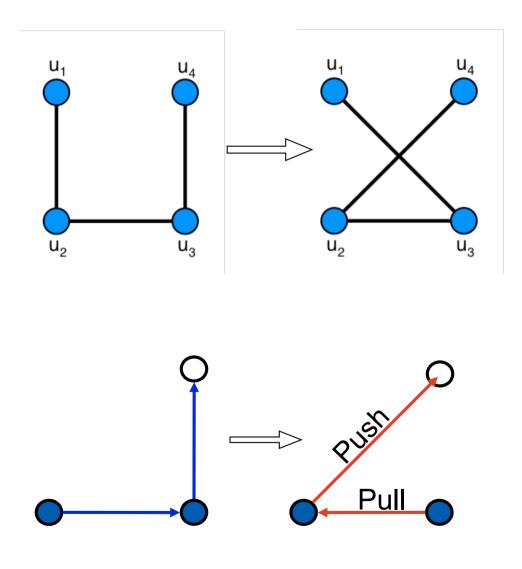
B CoNe Freiburg

All Graph Transformation

	Simple- Switching	Flipper	Pointer- Push&Pull	k-Flipper small k	k-Flipper large k
Graphs	Undirected Graphs	Undirected Graphs	Directed Multigraphs	Undirected Graphs	Undirected Graphs
Soundness	?				
Generality	$\boldsymbol{\zeta}$				
Feasibility					$\boldsymbol{\zeta}$
Convergence			?		

FREIBURG

A Good Peer-to-Peer-Operations Freiburg



FREBURG

Peer-to-Peer Networks 09 Random Graphs for Peer-to-Peer-Networks

ZW

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg