

Peer-to-Peer Networks 10 Fast Download

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

FREI

- Multicast-Tree in the Overlay Network
- Scribe [2001] is based on Pastry
 - Castro, Druschel, Kermarrec, Rowstron
- Similar approaches
 - CAN Multicast [2001] based on CAN²⁰⁶
 - Bayeux [2001] based on Tapestry
- Other approaches
 - Overcast ['00] and Narada ['00]
 - construct multi-cast trees using unicast connections
 - do not scale

A How Scribe Works

- Create
 - GroupID is assigned to a peer according to Pastry index
- ▸ Join
 - Interested peer performs lookup to group ID
 - When a peer is found in the Multicast tree then a new sub-path is inserted
- Download
 - Messages are distributed using the multicast tree
 - Nodes duplicate parts of the file

Bottleneck-Remover

- If a <u>node is overloaded then</u> from the group of peers he sends messages
- Select the farthest peer
- This node measures the delay between it and the other nodes
- and rebalances itself under the next (then former) brother

ເ່ລ

2007 wont comed. Overloaded Peer Edge is erased Farthest Peer new edge to closest peer

7

BURG

ZH

- Multicast trees discriminate certain nodes
- Lemma
 - In every binary tree the number of leaves = number of internal nodes +1
- Conclusion
 - · Nearly half of the nodes distribute data
 - While the other half does not distribute any data
 - An internal node has twice the upload as the average peer
- Solution: Larger degree?
- Lemma
 - In every node with degree d the number of internal nodes k und leaves b we observe
 - (d-1) k = b -1
- Implication
 - · Less peers have to suffer more upload

FREIBURG

- Castro, Druschel, Kermarrec, Nandi, **Rowstron, Singh 2001**
- Idea
 - Partition a file of size into k small parts
 - For each part use another multicast tree
 - Every peer works as leave and as distributing internal tree node
 - except the source
- Ideally, the upload of each node is a most the download

- Coordination

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - concentrates on download
 - uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - efficient download of a file using the uploads of all participating peers
 - · efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL
 - fairness among peers
 - seeders against leeches
 - usage of several sources

BURG

Part of

Bittorrent Coordination and File

P2P Netword Kodemlia & Chord

- Central coordination (original implementation)
 - by tracker host
 - for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information
 - tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences
- File
 - is partitions in smaller pieces
 - as describec in tracker file
 - every participating peer can redistribute downloaded parts as soon as he received it
 - · Bittorrent aims at the Split-Stream idea
- Interaction between the peers
 - · two peers exchange their information about existing parts
 - according to the policy of Bittorrent outstanding parts are transmitted to the other peer

- Problem
- The Coupon-Collector-Problem is the reason for a uneven distribution of parts
 - if a completely random choice is used
- Measures
- ✓ Rarest First
 - Every peer tries to download the parts which are rarest
 - * density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download
- Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - * especially when peers only shortly join
- #• Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - then a slow peer can not stall the last download

- Goal
 - self organizing system
 - good (uploading, seeding) peers are rewarded
 - _bad (downloading, leeching) peers are penalized
- Reward
 - good download speed
 - un-choking
- Penalty
 - Choking of the bandwidth
- Evaluation
 - Every peers Peers evaluates his environment from his past experiences

- Game Throng

- Every peer has a choke list
 - · requests of choked peers are not served for some time
 - peers can be unchoked after some time
- Adding to the choke list
 - Each peer has a fixed minimum amount of choked peers (e.g. 4)
 - Peers with the worst upload are added to the choke list
 - and replace better peers

Optimistic Unchoking

- Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

- R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)
 - Example
 - Bits x and y need to be transmitted
 - Every line transmits one bit
 - If only bits are transmitted
 - then only x or y can be transmitted in the middle?
 - By using X we can have both results at the outputs

Network Coding $\rightarrow P2P2$ CoNe Freiburg

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

- Theorem [Ahlswede et al.]
 - There is a network code for each graph such that each node receives as much information as the maximum flow of the corresponding flow problem

BURG