

Peer-to-Peer Networks 10 Fast Download

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

N.

- Motivation
 - Transmission of a data stream to many receivers
- Unicast
 - For each stream message have to be sent separately
 - Bottleneck at sender
- Multicast
 - Stream multiplies messages
 - No bottleneck

Working Principle CoNe Freiburg

IPv4 Multicast Addresses

- class D
 - outside of CIDR (Classless Interdomain Routing)
- 224.0.0.0 239.255.255.255

Hosts register via IGMP at this address

- IGMP = Internet Group Management Protocol
- After registration the multicast tree is updated

Source sends to multicast address

- Routers duplicate messages
- · and distribute them into sub-trees

All registered hosts receive these messages

- ends after Time-Out
- or when they unsubscribe

Problems

- No TCP only UDP
- Many routers do not deliver multicast messages
 - solution: tunnels

Routing Protocols CoNe Freiburg

- Host A Shortest-Path-Tree
- Shared Distribution Tree

From Cisco: http://www.cisco.com/en/US/ products/hw/switches/ps646/ products_configuration_guide_chapter09186a00 8014f350.html

UNI FREIBURG

A IP Multicast Seldomly Available

- IP Multicast is the fastest download method
- Yet, not many routers support IP multicast
- -http://www.multicasttech.com/status/

The Percentage of the Internet Supporting Multicast

Why so few Multicast Routers?

Despite successful use

CoNe Freiburg

- in video transmission of IETF-meetings
- MBONE (Multicast Backbone)
- Only few ISPs provide IP Multicast

Additional maintenance

- · difficult to configure
- · competing protocols

Enabling of Denial-of-Service-Attacks

· Implications larger than for Unicast

Transport protocol

- only UDP
 - Unreliable
- Forward error correction necessary
 - or proprietary protocols at the routers (z.B. CISCO)

Market situation

- · consumers seldomly ask for multicast
 - prefer P2P networks
- because of a few number of files and small number of interested parties the multicast is not desirable (for the ISP)
 - small number of addresses

Scribe & Friends

- Multicast-Tree in the Overlay Network
- Scribe [2001] is based on Pastry
 - Castro, Druschel, Kermarrec, Rowstron
- Similar approaches
 - CAN Multicast [2001] based on CAN²⁰⁶
 - Bayeux [2001] based on Tapestry
- Other approaches
 - Overcast ['00] and Narada ['00]
 - construct multi-cast trees using unicast connections
 - do not scale

- Create
 - GroupID is assigned to a peer according to Pastry index
- Join
 - Interested peer performs lookup to group ID
 - When a peer is found in the Multicast tree then a new sub-path is inserted
- Download
 - Messages are distributed using the multicast tree
 - Nodes duplicate parts of the file

Scribe Optimization

Bottleneck-Remover

- If a node is overloaded then from the group of peers he sends messages
- · Select the farthest peer
- This node measures the delay between it and the other nodes
- and rebalances itself under the next (then former) brother

- Multicast trees discriminate certain nodes
- Lemma
 - In every binary tree the number of leaves = number of internal nodes +1
- Conclusion
 - Nearly half of the nodes distribute data
 - While the other half does not distribute any data
 - An internal node has twice the upload as the average peer
- Solution: Larger degree?
- Lemma
 - In every node with degree d the number of internal nodes k und leaves b we observe
 - (d-1) k = b -1
- Implication
 - · Less peers have to suffer more upload

REIBURG

Split-Stream CoNe Freiburg

- Castro, Druschel, Kermarrec, Nandi, Rowstron, Singh 2001
- Idea
 - Partition a file of size into k small parts
 - For each part use another multicast tree
 - Every peer works as leave and as distributing internal tree node
 - except the source
- Ideally, the upload of each node is a most the download

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - · concentrates on download
 - · uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - · efficient download of a file using the uploads of all participating peers
 - efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL
 - fairness among peers
 - seeders against leeches
 - usage of several sources

Central coordination (original implementation)

- by tracker host
- for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information
- tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences
- ▸ File
 - is partitions in smaller pieces
 - as describec in tracker file
 - every participating peer can redistribute downloaded parts as soon as he received it
 - · Bittorrent aims at the Split-Stream idea

Interaction between the peers

- two peers exchange their information about existing parts
- according to the policy of Bittorrent outstanding parts are transmitted to the other peer

LUN

- Problem
- The Coupon-Collector-Problem is the reason for a uneven distribution of parts
 - if a completely random choice is used
- Measures
- Rarest First
 - Every peer tries to download the parts which are rarest
 - * density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download
- Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - * especially when peers only shortly join
- Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - then a slow peer can not stall the last download

- Goal
 - self organizing system
 - good (uploading, seeding) peers are rewarded
 - bad (downloading, leeching) peers are penalized
- Reward
 - good download speed
 - un-choking
- Penalty
 - Choking of the bandwidth
- Evaluation
 - Every peers Peers evaluates his environment from his past experiences

- Every peer has a choke list
 - requests of choked peers are not served for some time
 - peers can be unchoked after some time
- Adding to the choke list
 - Each peer has a fixed minimum amount of choked peers (e.g. 4)
 - · Peers with the worst upload are added to the choke list
 - and replace better peers
- Optimistic Unchoking
 - Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

CoNe Freiburg

Network Coding

- R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)
- Example
 - Bits x and y need to be transmitted
 - Every line transmits one bit
 - If only bits are transmitted
 - then only x or y can be transmitted in the middle?
 - By using X we can have both results at the outputs

CoNe Freiburg

Network Coding

 R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

- Theorem [Ahlswede et al.]
 - There is a network code for each graph such that each node receives as much information as the maximum flow of the corresponding flow problem

- Christos Gkantsidis, Pablo Rodriguez Rodriguez, 2005
- Goal
 - Overcoming the Coupon-Collector-Problem
 - a file of m parts can be always reconstructed if at least m network codes have been received
 - Optimal transmission of files within the available bandwidth
- Method
 - Use codes as linear combinations of a file
 - Produced code contains the vector and the variables
 - During the distribution the linear combination are re-combined to new parts
 - The receiver collects the linear combinations
 - and reconstructs the original file using matrix operations

A Coding and Decoding Freiburg

- File: x₁, x₂, ..., x_m
- Codes: y₁,y₂,...,y_m
- Random Variables r_{ij}

$$\left(\begin{array}{ccc} r_{11} & \dots & r_{1m} \\ \vdots & \ddots & \vdots \\ r_{m1} & \dots & r_{mm} \end{array}
ight) \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_m \end{array}
ight) = \left(\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array}
ight)$$

If the matrix is invertable then

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_m\end{array}\right) = \left(\begin{array}{ccc} r_{11} & \dots & r_{1m}\\ \vdots & \ddots & \vdots\\ r_{m1} & \dots & r_{mm}\end{array}\right)^{-1} \cdot \left(\begin{array}{c} y_1\\ \vdots\\ y_m\end{array}\right)$$

 $(r_{i1}r_{i2}\ldots r_{im})\cdot \left(egin{array}{c} x_1\ dots\ x_m\ \end{pmatrix} = y_i$

CoNe Freiburg

Speed of Network-Coding

- Comparison
 - Network-Coding (NC) versus
 - Local-Rarest (LR) and
 - Local-Rarest+Forward-Error-Correction (LR+FEC)

A Problems of Network-Coding

- Overhead of storing of variables
 - per block one variable vector
 - e.g. 4 GB file with 100 kB blocks
 - 4 GB/100 KB = 40 kB
 - Overhead of 40%
 - better: 4 GB und 1 MB-Block
 - 4kB Overhead = 0,4%
- Overhead of Decoding
 - Inversion of a m x m- Matrix needs time O(m³)
- Read/Write Accesses
 - For writing m blocks each part must be read m times
 - Disk access is much slower than memory access

Peer-to-Peer Networks 10 Fast Download

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

N.