
Peer-to-Peer Networks
11 Past

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

PAST

! PAST: A large-scale, persistent peer-to-peer storage utility
-  by Peter Druschel (Rice University, Houston – now Max-Planck-Institut,

Saarbrücken/Kaiserlautern)

-  and Antony Rowstron (Microsoft Research)
! Literature

-  A. Rowstron and P. Druschel, "Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM
SOSP'01, 2001.

• all pictures from this paper

-  P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-
peer storage utility", HotOS VIII, May 2001.

2

Goals of PAST

! Peer-to-Peer based Internet Storage
-  on top of Pastry

! Goals
-  File based storage
-  High availability of data
-  Persistent storage
-  Scalability
-  Efficient usage of resources

5

Motivation

! Multiple, diverse nodes in the Internet can be
used
-  safety by different locations

! No complicated backup
-  No additional backup devices
-  No mirroring
-  No RAID or SAN systems with special hardware

!  Joint use of storage
-  for sharing files
-  for publishing documents

! Overcome local storage and data safety
limitations

6

Interface of PAST

! Create:
fileId = Insert(name, owner-credentials, k, file)

-  stores a file at a user-specified number k of divers nodes
within the PAST network

-  produces a 160 bit ID which identifies the file (via
SHA-1)

! Lookup:
file = Lookup(fileId)

-  reliably retrieves a copy of the file identified fileId

! Reclaim:
Reclaim(fileId, owner-credentials)

-  reclaims the storage occupied by the k copies of the file
identified by fileId

8

Interface of PAST

! Other operations do not exist:
-  No erase

•  to avoid complex agreement protocols

-  No write or rename
•  to avoid write conflicts

-  No group right management
•  to avoid user, group managements

-  No list files, file information, etc.

! Such operations must be provided by additional
layer

9

Relevant Parts of Pastry

! Leafset:
-  Neighbors on the ring

! Routing Table
-  Nodes for each prefix + 1

other letter

! Neighborhood set
-  set of nodes which have

small TTL

11

Interfaces of Pastry

!  route(M, X):
-  route message M to node with nodeId numerically

closest to X

! deliver(M):
-  deliver message M to application

!  forwarding(M, X):
-  message M is being forwarded towards key X

! newLeaf(L):
-  report change in leaf set L to application

12

Insert Request Operation

! Compute fileId by hashing

-  file name
-  public key of client

-  some random numbers, called salt
! Storage (k x filesize)

-  is debited against client‘s quota

! File certificate
-  is produced and signed with owner‘s private key

-  contains fileID, SHA-1 hash of file‘s content, replciation factor k, the
random salt, creation date, etc.

14

Insert Request Operation

! File and certificate are routed via Pastry

•  to node responsible for fileID
! When it arrives in one node of the k nodes close to the fileId

•  the node checks the validityof the file
•  it is duplicated to all other k-1 nodes numerically close to fileId

! When all k nodes have accepted a copy

•  Each nodes sends store receipt is send to the owner
!  If something goes wrong an error message is sent back

•  and nothing stored

15

Lookup

! Client sends message with requested fileId into
the Pastry network

! The first node storing the file answers
-  no further routing

! The node sends back the file
! Locality property of Pastry helps to send a close-

by copy of a file

16

Reclaim

! Client‘s nodes sends reclaim certificate
-  allowing the storing nodes to check that the claim is

authentificated

! Each node sends a reclaim receipt
! The client sends this recept to the retrieve the

storage from the quota management

17

Security

! Smartcard
-  for PAST users which want to store files
-  generates and verifies all certificates
-  maintain the storage quotas
-  ensure the integrity of nodeID and fileID assignment

! Users/nodes without smartcard
-  can read and serve as storage servers

! Randomized routing
-  prevents intersection of messages

! Malicious nodes only have local influence

18

Storage Management

! Goals
-  Utilization of all storage
-  Storage balancing
-  Providing k file replicas

! Methods
-  Replica diversion

• exception to storing replicas nodes in the leafset

-  File diversion
•  if the local nodes are full all replicas are stored at different

locations

19

Causes of Storage Load Imbalance

! Statistical variation
-  birthday paradoxon (on a weaker scale)

! High variance of the size distribution
-  Typical heavy-tail distribution, e.g. Pareto distribution

! Different storage capacity of PAST nodes

20

Heavy Tail Distribution

! Discrete Pareto Distribution for x ∈ {1,2,3,…}

-  with constant factor
! Heavy tail

-  only for small k moments E[Xk] are defined
-  Expectation is defined only if α>2

-  Variance and E[X2] only exist if α>3

-  E[Xk] is defined ony if α>k+1
! Often observed:

-  Distribution of wealth, sizes of towns, frequency of words, length of
molecules, ...,

-  file length, WWW documents
• Heavy-Tailed Probability Distributions in the World Wide Web, Crovella et

al. 1996

21

Per-Node Storage

! Assumption:
-  Storage of nodes differ by at most a factor of 100

! Large scale storage
-  must be inserted as multiple PAST nodes

! Storage control:
-  if a node storage is too large it is asked to split and

rejoin
-  if a node storage is too small it is rejected

22

Replica Diversion

! The first node close to the
fileId checks whether it can
store the file
-  if yes, it does and sends the store

receipt

!  If a node A cannot store the
file, it tries replica diversion
-  A chooses a node B in its leaf set

which is not among the k closest
asks B to store the copy

-  If B accepts, A stores a pointer to
B and sends a store receipt

! When A or B fails then the
replica is inaccessible
-  failure probability is doubled

23

Policies for Replica Diversion

! Acceptance of replicas at a node
-  If (size of a file)/(remaining free space) > t then reject the file

•  for different t`s for close nodes (tpri) and far nodes (tdiv), where
tpri > tdiv

-  discriminates large files and far storage
! Selecting a node to store a diverted replica

-  in the leaf set and
-  not in the k nodes closest to the fileId
-  do not hold a diverted replica of the same file

! Deciding when to divert a file to different part of the Pastry ring
-  If one of the k nodes does not find a proxy node
-  then it sends a reject message
-  and all nodes for the replicas discard the file

24

File Diversion

!  If k nodes close to the chosen fileId
-  cannot store the file
-  nor divert the replicas locally in the

leafset
!  then an error message is sent to the

client
! The client generates a new fileId

using different salt
-  and repeats the insert operation up to

3 times

-  then the operation is aborted and a
failure is reported to the application

! Possibly the application retries with
small fragments of the file

25

Maintaining Replicas

! Pastry protocols checks leaf set periodically
! Node failure has been recognized

•  if a node is unresponsive for some certain time
-  Pastry triggers adjustment of the leaf set

• PAST redistributes replicas
-  if the new neighbor is too full, then other nodes in the nodes will be

uses via replica diversion
! When a new node arrives

-  files are not moved, but pointers adjusted (replica diversion)
-  because of ratio of storage to bandwidth

26

File Encoding

!  k replicas is not the best redundancy strategy
! Using a Reed-Solomon encoding

-  with m additional check sum blocks to n original data blocks
-  reduces the storage overhead to (m+n)/n times the file size

•  if all m+n shares are distributed over different nodes
-  possibly speeds upt the access spee

! PAST
-  does NOT use any such encoding techniques

27

Caching

! Goal:
-  Minimize fetch distance
-  Maximize query throughput
-  Balance the query load

! Replicas provide these features
-  Highly popular files may demand many more replicas

•  this is provided by cache management

! PAST nodes use „unused“ portion to cache files
-  cached copies can be erased at any time

•  e.g. for storing primary of redirected replicas

! When a file is routed through a node during lookup or insert
it is inserted into the local cache

! Cache replacement policy: GreedyDual-Size
-  considers aging, file size and costs of a file

28

Summary

! PAST provides a distributed storage system
-  which allows full storage usage and locality features

! Storage management
-  based ond Smartcard system

• provides a hardware restriction

-  utilization moderately increases failure rates and time
behavior

29

Peer-to-Peer Networks
11 Past

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

