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Peer-to-Peer based Internet Storage
- on top of Pastry

Goals

- File based storage

- High availability of data

- Persistent storage

- Scalability

- Efficient usage of resources
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Multiple, diverse nodes in the Internet can be
used

- safety by different locations

No complicated backup

- No additional backup devices
- No mirroring
- No RAID or SAN systems with special hardware

Joint use of storage
- for sharing files
- for publishing documents

Overcome local storage and data safety
limitations
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Create:

fileId = Insert(name, owner-credentials, k, file)

- stores a file at a user-specified number k of divers nodes
within the PAST network

- produces a 160 bit ID which identifies the file (via
SHA-1)

Lookup:

file = Lookup(fileId)
- reliably retrieves a copy of the file identified fileld

Reclaim:

Reclaim(fileId, owner-credentials)

- reclaims the storage occupied by the k copies of the file
identified by fileld
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Other operations do not exist:
- No erase
to avoid complex agreement protocols
- No write or rename
to avoid write conflicts
- No group right management
to avoid user, group managements
- No list files, file information, etc.

Such operations must be provided by additional
layer
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Leafset:
- Neighbors on the ring

Routing Table

- Nodes for each prefix + 1
other letter

Neighborhood set

- set of nodes which have
small TTL

Nodeld 10233102

Leaf set [ SWALLER |[ LARGER |

| 10233033 | 10233021 | 10233120 || 10233122 |
| 10233001 | 10233000 | 10233230 | 10233232 |

Routing table

| -0-2212102 | 1 | -2-2301203 | -3-1203203 |
0 1-1-301233 || 1-2-230203 || 1-3-021022 |
[ 10-0-31203 | 10-1-32102 |[NN2R| 10-3-23302 |
[ 102-0-0230 | 102-1-1302 || 102-2-2302 | a
[ 1023-0-322 | 1023-1-000 || 1023-2-121 [ g
| 10233-0-01 || 10233-2-32 | |
.o | [ 102331-2-0 | |
| | [

Neighborhood set

| 13021022 | 10200230 | 11301233 | 31301233 |
| 02212102 | 22301203 | 31203203 | 33213321 |
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route(M, X):

- route message M to node with nodeld numerically
closest to X

deliver(M):

- deliver message M to application
forwarding(M, X):

- message M is being forwarded towards key X
newlLeaf(L):

- report change in leaf set L to application
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Compute fileld by hashing
file name
public key of client
some random numbers, called salt
Storage (k x filesize)
is debited against client's quota
File certificate
is produced and signed with owner’s private key

contains fileID, SHA-1 hash of file's content, replciation factor k, the
random salt, creation date, etc.
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File and certificate are routed via Pastry
 to node responsible for filelD
When it arrives in one node of the k nodes close to the fileld
 the node checks the validityof the file
« it is duplicated to all other k-1 nodes numerically close to fileld
When all k nodes have accepted a copy
« Each nodes sends store receipt is send to the owner
If something goes wrong an error message is sent back
« and nothing stored
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Client sends message with requested fileld into
the Pastry network

The first node storing the file answers
- no further routing

The node sends back the file

Locality property of Pastry helps to send a close-
by copy of a file
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Client’'s nodes sends reclaim certificate

- allowing the storing nodes to check that the claim is
authentificated

Each node sends a reclaim receipt

The client sends this recept to the retrieve the
storage from the quota management
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Smartcard

- for PAST users which want to store files

- generates and verifies all certificates

- maintain the storage quotas

- ensure the integrity of nodelD and fileID assignment
Users/nodes without smartcard

- can read and serve as storage servers
Randomized routing

- prevents intersection of messages

Malicious nodes only have local influence
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Goals

- Utilization of all storage
- Storage balancing

- Providing k file replicas

Methods

- Replica diversion

exception to storing replicas nodes in the leafset
- File diversion

if the local nodes are full all replicas are stored at different
locations
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Statistical variation

- birthday paradoxon (on a weaker scale)

High variance of the size distribution

- Typical heavy-tail distribution, e.g. Pareto distribution

Different storage capacity of PAST nodes
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, o 1
Discrete Pareto Distribution for x € {1,2,3,...} PX=z]=—+——
o ((a) -z
- with constant factor ¢(o) =" =
o v 100

WWW Document Sizes =
Unix File Sizes —+

Heavy talil
- only for small k moments E[XK] are defined 0l BN
- Expectation is defined only if a>2 |
- Variance and E[X?] only exist if a>3
- E[X¥] is defined ony if a>k+1

Often observed:

Percent of All Files

0.1 F|

- Distribution of wealth, sizes of towns, frequency of  “%00 1000 10000 100000 1er0s
molecules, ... Size in Bytes

- file length, WWW documents

Heavy-Tailed Probability Distributions in the World Wide Web, Crovella et
al. 1996
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Assumption:
- Storage of nodes differ by at most a factor of 100

Large scale storage
- must be inserted as multiple PAST nodes

Storage control:

- if a node storage is too large it is asked to split and
rejoin

- if a node storage is too small it is rejected
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The first node close to the
fileld checks whether it can
store the file 0.18

- if yes, it does and sends the z:
store receipt € 12
If a node A cannot store the £ o
file, it tries replica diversion £
- A chooses a node B in its leaf é 0.04 -
set which is not among the k 3 002 -
0

closest asks B to store the copy 20 40 60 80 100

- If B accepts, A stores a pointer Utilization (%)
to B and sends a store receipt Figure 5: Cumulative ratio of replica diversions ver-

. sus storage utilization, when t,,,.; = 0.1 and %4, = 0.05.
When A or B fails then the ’ ’
replica is inaccessible

- failure probability is doubled

o
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Acceptance of replicas at a node
- If (size of a file)/(remaining free space) > t then reject the file

for different t's for close nodes (tpri) and far nodes (tqiv), where
tori > tdiv

- discriminates large files and far storage
Selecting a node to store a diverted replica
- in the leaf set and
- not in the k nodes closest to the fileld
- do not hold a diverted replica of the same file
Deciding when to divert a file to different part of the Pastry ring
- If one of the k nodes does not find a proxy node
- then it sends a reject message
- and all nodes for the replicas discard the file



A File Diversion
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If kK nodes close to the chosen fileld

- cannot store the file

- nor divert the replicas locally in the
leafset

then an error message is sent to the
client

The client generates a new fileld
using different salt

- and repeats the insert operation up to
3 times

- then the operation is aborted and a
failure is reported to the application

Possibly the application retries with
small fragments of the file
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Figure 7: File insertion failures versus storage uti-
lization for the filesystem workload, when t,,; = 0.1,
taiv = 0.05.
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Figure 4: Ratio of file diversions and cumulative
insertion failures versus storage utilization, t,,; = 0.1
and tdz’v = 0.05.
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Pastry protocols checks leaf set periodically
Node failure has been recognized
if a node is unresponsive for some certain time
- Pastry triggers adjustment of the leaf set
PAST redistributes replicas

- if the new neighbor is too full, then other nodes in the nodes will be
uses via replica diversion

When a new node arrives
- files are not moved, but pointers adjusted (replica diversion)
- because of ratio of storage to bandwidth
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Kk replicas is not the best redundancy strategy
Using a Reed-Solomon encoding
- with m additional check sum blocks to n original data blocks
- reduces the storage overhead to (m+n)/n times the file size
if all m+n shares are distributed over different nodes

- possibly speeds upt the access spee
PAST
- does NOT use any such encoding techniques
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Goal:

- Minimize fetch distance

- Maximize query throughput

- Balance the query load

Replicas provide these features

- Highly popular files may demand many more replicas
this is provided by cache management

PAST nodes use ,unused” portion to cache files

- cached copies can be erased at any time
e.g. for storing primary of redirected replicas

When a file is routed through a node during lookup or
Insert it is inserted into the local cache

Cache replacement policy: GreedyDual-Size
- considers aging, file size and costs of a file
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Experimental Results Caching
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Figure 8: Global cache hit ratio and average
number of message hops versus utilization using

Least-Recently-Used (LRU), GreedyDual-Size (GD-
S), and no caching, with ¢,,; = 0.1 and %4, = 0.05.
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PAST provides a distributed storage system

- which allows full storage usage and locality features

Storage management
- based ond Smartcard system
provides a hardware restriction

- utilization moderately increases failure rates and time
behavior
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