A

CoNe
Freiburg

Peer-to-Peer Networks
11 Past

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

A PAST

CoNe
Freiburg

PAST: A large-scale, persistent peer-to-peer storage utility

- by Peter Druschel (Rice University, Houston — now Max-Planck-Institut,
Saarbrucken/Kaiserlautern)

- and Antony Rowstron (Microsoft Research)
Literature

- A. Rowstron and P. Druschel, "Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM
SOSP'01, 2001.

all pictures from this paper

- P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-
peer storage utility", HotOS VIII, May 2001.

A\ Goals of PAST

CoNe
Freiburg

Peer-to-Peer based Internet Storage
- on top of Pastry

Goals

- File based storage

- High availability of data

- Persistent storage

- Scalability

- Efficient usage of resources

A\ Motivation

CoNe
Freiburg

Multiple, diverse nodes in the Internet can be
used

- safety by different locations

No complicated backup

- No additional backup devices
- No mirroring
- No RAID or SAN systems with special hardware

Joint use of storage
- for sharing files
- for publishing documents

Overcome local storage and data safety
limitations

A Interface of PAST

CoNe
Freiburg

Create:

fileId = Insert(name, owner-credentials, k, file)

- stores a file at a user-specified number k of divers nodes
within the PAST network

- produces a 160 bit ID which identifies the file (via
SHA-1)

Lookup:

file = Lookup(fileId)
- reliably retrieves a copy of the file identified fileld

Reclaim:

Reclaim(fileId, owner-credentials)

- reclaims the storage occupied by the k copies of the file
identified by fileld

A Interface of PAST

CoNe
Freiburg

Other operations do not exist:
- No erase
to avoid complex agreement protocols
- No write or rename
to avoid write conflicts
- No group right management
to avoid user, group managements
- No list files, file information, etc.

Such operations must be provided by additional
layer

A. Relevant Parts of Pastry

CoNe
Freiburg

Leafset:
- Neighbors on the ring

Routing Table

- Nodes for each prefix + 1
other letter

Neighborhood set

- set of nodes which have
small TTL

Nodeld 10233102

Leaf set [SWALLER |[LARGER |

| 10233033 | 10233021 | 10233120 || 10233122 |
| 10233001 | 10233000 | 10233230 | 10233232 |

Routing table

| -0-2212102 | 1 | -2-2301203 | -3-1203203 |
0 1-1-301233 || 1-2-230203 || 1-3-021022 |
[10-0-31203 | 10-1-32102 |[NN2R| 10-3-23302 |
[102-0-0230 | 102-1-1302 || 102-2-2302 | a
[1023-0-322 | 1023-1-000 || 1023-2-121 [g
| 10233-0-01 || 10233-2-32 | |
.o | [102331-2-0 | |
| | [

Neighborhood set

| 13021022 | 10200230 | 11301233 | 31301233 |
| 02212102 | 22301203 | 31203203 | 33213321 |

A, Interfaces of Pastry

CoNe
Freiburg

route(M, X):

- route message M to node with nodeld numerically
closest to X

deliver(M):

- deliver message M to application
forwarding(M, X):

- message M is being forwarded towards key X
newlLeaf(L):

- report change in leaf set L to application

A, Insert Request Operation

CoNe
Freiburg

Compute fileld by hashing
file name
public key of client
some random numbers, called salt
Storage (k x filesize)
is debited against client's quota
File certificate
is produced and signed with owner’s private key

contains fileID, SHA-1 hash of file's content, replciation factor k, the
random salt, creation date, etc.

A, Insert Request Operation

CoNe
Freiburg

File and certificate are routed via Pastry
 to node responsible for filelD
When it arrives in one node of the k nodes close to the fileld
 the node checks the validityof the file
« it is duplicated to all other k-1 nodes numerically close to fileld
When all k nodes have accepted a copy
« Each nodes sends store receipt is send to the owner
If something goes wrong an error message is sent back
« and nothing stored

A, Lookup

CoNe
Freiburg

Client sends message with requested fileld into
the Pastry network

The first node storing the file answers
- no further routing

The node sends back the file

Locality property of Pastry helps to send a close-
by copy of a file

A Reclaim

CoNe
Freiburg

Client’'s nodes sends reclaim certificate

- allowing the storing nodes to check that the claim is
authentificated

Each node sends a reclaim receipt

The client sends this recept to the retrieve the
storage from the quota management

A\ Security

CoNe
Freiburg

Smartcard

- for PAST users which want to store files

- generates and verifies all certificates

- maintain the storage quotas

- ensure the integrity of nodelD and fileID assignment
Users/nodes without smartcard

- can read and serve as storage servers
Randomized routing

- prevents intersection of messages

Malicious nodes only have local influence

A. Storage Management
CoNe
Freiburg

Goals

- Utilization of all storage
- Storage balancing

- Providing k file replicas

Methods

- Replica diversion

exception to storing replicas nodes in the leafset
- File diversion

if the local nodes are full all replicas are stored at different
locations

A\ Causes of Storage Load Imbalance
Fncm‘a’i;‘lelrg

Statistical variation

- birthday paradoxon (on a weaker scale)

High variance of the size distribution

- Typical heavy-tail distribution, e.g. Pareto distribution

Different storage capacity of PAST nodes

A\ Heavy Tail Distribution

CoNe
Freiburg

, o 1
Discrete Pareto Distribution for x € {1,2,3,...} PX=z]=—+——
o ((a) -z
- with constant factor ¢(o) =" =
o v 100

WWW Document Sizes =
Unix File Sizes —+

Heavy talil
- only for small k moments E[XK] are defined 0l BN
- Expectation is defined only if a>2 |
- Variance and E[X?] only exist if a>3
- E[X¥] is defined ony if a>k+1

Often observed:

Percent of All Files

0.1 F|

- Distribution of wealth, sizes of towns, frequency of “%00 1000 10000 100000 1er0s
molecules, ... Size in Bytes

- file length, WWW documents

Heavy-Tailed Probability Distributions in the World Wide Web, Crovella et
al. 1996

A. Per-Node Storage

CoNe
Freiburg

Assumption:
- Storage of nodes differ by at most a factor of 100

Large scale storage
- must be inserted as multiple PAST nodes

Storage control:

- if a node storage is too large it is asked to split and
rejoin

- if a node storage is too small it is rejected

A, Replica Diversion

CoNe
Freiburg

The first node close to the
fileld checks whether it can
store the file 0.18

- if yes, it does and sends the z:
store receipt € 12
If a node A cannot store the £ o
file, it tries replica diversion £
- A chooses a node B in its leaf é 0.04 -
set which is not among the k 3 002 -
0

closest asks B to store the copy 20 40 60 80 100

- If B accepts, A stores a pointer Utilization (%)
to B and sends a store receipt Figure 5: Cumulative ratio of replica diversions ver-

. sus storage utilization, when t,,,.; = 0.1 and %4, = 0.05.
When A or B fails then the ’ ’
replica is inaccessible

- failure probability is doubled

o

A, Policies for Replica Diversion

CoNe
Freiburg

Acceptance of replicas at a node
- If (size of a file)/(remaining free space) > t then reject the file

for different t's for close nodes (tpri) and far nodes (tqiv), where
tori > tdiv

- discriminates large files and far storage
Selecting a node to store a diverted replica
- in the leaf set and
- not in the k nodes closest to the fileld
- do not hold a diverted replica of the same file
Deciding when to divert a file to different part of the Pastry ring
- If one of the k nodes does not find a proxy node
- then it sends a reject message
- and all nodes for the replicas discard the file

A File Diversion

CoNe
Freiburg

If kK nodes close to the chosen fileld

- cannot store the file

- nor divert the replicas locally in the
leafset

then an error message is sent to the
client

The client generates a new fileld
using different salt

- and repeats the insert operation up to
3 times

- then the operation is aborted and a
failure is reported to the application

Possibly the application retries with
small fragments of the file

20971520 + 0.01
0.009
0.008
15728640
—_ 0.007
(2]
2 0.006 2
8 - —
@ 10485760 - ‘ R T 0.005 &
; Failed insertion » ‘4] 0004 E
ic — Failure ratio : "
LTS M8+ 0.0038
5242880 - . .
i+ 0.002
‘/J 0.001
0 L T T T -0
0 20 40 60 80 100

Utilization (%)

Figure 7: File insertion failures versus storage uti-
lization for the filesystem workload, when t,,; = 0.1,
taiv = 0.05.

0.04 -
I 3 Redirects
0.085 1|12 Redirects
3 1 Redirect ‘
0.03 5 |nsertion failure h
i)
5 0.025 [
o T
g 002 {
=
€ 0015
o
0.01
0.005
0 e e —— L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Utilization (%)

Figure 4: Ratio of file diversions and cumulative
insertion failures versus storage utilization, t,,; = 0.1
and tdz’v = 0.05.

A. Maintaining Replicas
CoNe
Freiburg

Pastry protocols checks leaf set periodically
Node failure has been recognized
if a node is unresponsive for some certain time
- Pastry triggers adjustment of the leaf set
PAST redistributes replicas

- if the new neighbor is too full, then other nodes in the nodes will be
uses via replica diversion

When a new node arrives
- files are not moved, but pointers adjusted (replica diversion)
- because of ratio of storage to bandwidth

A, File Encoding

CoNe
Freiburg

Kk replicas is not the best redundancy strategy
Using a Reed-Solomon encoding
- with m additional check sum blocks to n original data blocks
- reduces the storage overhead to (m+n)/n times the file size
if all m+n shares are distributed over different nodes

- possibly speeds upt the access spee
PAST
- does NOT use any such encoding techniques

A, Caching

CoNe
Freiburg

Goal:

- Minimize fetch distance

- Maximize query throughput

- Balance the query load

Replicas provide these features

- Highly popular files may demand many more replicas
this is provided by cache management

PAST nodes use ,unused” portion to cache files

- cached copies can be erased at any time
e.g. for storing primary of redirected replicas

When a file is routed through a node during lookup or
Insert it is inserted into the local cache

Cache replacement policy: GreedyDual-Size
- considers aging, file size and costs of a file

A\

CoNe
Freiburg

Experimental Results Caching

1 2.5
None: # Hops
0.9 {p .
=]
0.8 - . &
o D-S : Hit Rate £
T 0.7 1 =2
= g
£ 06 15 2
£ ©
© 04 . . E
s LRU: # Hops f
3 03 e [——GD-S: Hit Rate |\)
GD-S: # Hops ~~LRU : Hit Rate \ :
o2 | ——GD-S: # Hops H 05 2
0.1 | ——LRU: # Hops
—— None: # Hops
0 . , L | .
0 20 40 60 80 100

Utilization (%)

Figure 8: Global cache hit ratio and average
number of message hops versus utilization using

Least-Recently-Used (LRU), GreedyDual-Size (GD-
S), and no caching, with ¢,,; = 0.1 and %4, = 0.05.

A, Summary

CoNe
Freiburg

PAST provides a distributed storage system

- which allows full storage usage and locality features

Storage management
- based ond Smartcard system
provides a hardware restriction

- utilization moderately increases failure rates and time
behavior

A

CoNe
Freiburg

Peer-to-Peer Networks
11 Past

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

