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PAST

! PAST: A large-scale, persistent peer-to-peer storage utility 

- by Peter Druschel (Rice University, Houston – now Max-Planck-Institut, 
Saarbrücken/Kaiserlautern) 

- and Antony Rowstron (Microsoft Research) 
! Literature 

- A. Rowstron and P. Druschel, "Storage management and caching in 
PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM 
SOSP'01, 2001. 
• all pictures from this paper 

- P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-
peer storage utility", HotOS VIII,  May 2001.
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Goals of PAST

! Peer-to-Peer based Internet Storage  
- on top of Pastry  

! Goals 
- File based storage 
- High availability of data 
- Persistent storage  
- Scalability 
- Efficient usage of resources
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Motivation

! Multiple, diverse nodes in the Internet can be 
used 
- safety by different locations 

! No complicated backup 
- No additional backup devices 
- No mirroring 
- No RAID or SAN systems with special hardware 

! Joint use of storage 
- for sharing files 
- for publishing documents 

! Overcome local storage and data safety 
limitations
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Interface of PAST

! Create: 
fileId = Insert(name, owner-credentials, k, file)

- stores a file at a user-specified number k of divers nodes 
within the PAST network 

- produces a 160 bit ID which identifies the file (via 
SHA-1) 

! Lookup: 
file = Lookup(fileId)

- reliably retrieves a copy of the file identified fileId 

! Reclaim: 
Reclaim(fileId, owner-credentials)

- reclaims the storage occupied by the k copies of the file 
identified by fileId
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Interface of PAST

! Other operations do not exist: 
- No erase 

• to avoid complex agreement protocols 
- No write or rename 

• to avoid write conflicts 
- No group right management 

• to avoid user, group managements 
- No list files, file information, etc. 

! Such operations must be provided by additional 
layer
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Relevant Parts of Pastry

! Leafset: 
- Neighbors on the ring 

! Routing Table 
- Nodes for each prefix + 1 

other letter 

! Neighborhood set 
- set of nodes which have 

small TTL
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nodeId in the first n digits, but whose n + 1th digit has
one of the 2b − 1 possible values other than the n + 1th
digit in the present node’s id. Each entry in the routing
table points to one of potentially many nodes whose nodeId
have the appropriate prefix; in practice, a node is chosen
that is close to the present node, according to the proximity
metric. If no node is known with a suitable nodeId, then the
routing table entry is left empty. The uniform distribution
of nodeIds ensures an even population of the nodeId space;
thus, only ⌈log2bN⌉ levels are populated in the routing table.

In addition to the routing table, each node maintains IP
addresses for the nodes in its leaf set and its neighborhood
set. The leaf set is the set of nodes with the l/2 numeri-
cally closest larger nodeIds, and the l/2 nodes with numer-
ically closest smaller nodeIds, relative to the present node’s
nodeId. The neighborhood set is a set of l nodes that are
near the present node, according to the proximity metric.
It is not used in routing, but is useful during node addi-
tion/recovery. Figure 1 depicts the state of a PAST node
with the nodeId 10233102 (base 4), in a hypothetical system
that uses 16 bit nodeIds and values of b = 2 and l = 8.

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203

0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302

102-0-0230 102-1-1302 102-2-2302 3

1023-0-322 1023-1-000 1023-2-121 3

10233-0-01 1 10233-2-32

0 102331-2-0
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Neighborhood set
13021022 10200230 11301233 31301233

02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122

10233001 10233000 10233230 10233232

LARGERSMALLER

Figure 1: State of a hypothetical Pastry node with
nodeId 10233102, b = 2, and l = 8. All numbers
are in base 4. The top row of the routing table
represents level zero. The shaded cell at each level
of the routing table shows the corresponding digit
of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with
10233102 - next digit - rest of nodeId. The associated IP
addresses are not shown.

In each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the fileId a prefix
that is at least one digit (or b bits) longer than the prefix
that the fileId shares with the present node’s id. If no such
node is known, the message is forwarded to a node whose
nodeId shares a prefix with the fileId as long as the current
node, but is numerically closer to the fileId than the present
node’s id. Such a node must be in the leaf set unless the
message has already arrived at the node with numerically
closest nodeId. And, unless ⌊l/2⌋ adjacent nodes in the leaf
set have failed simultaneously, at least one of those nodes
must be live.
Locality Next, we briefly discuss Pastry’s properties with

respect to the network proximity metric. Recall that the
entries in the node routing tables are chosen to refer to a
nearby node, in terms of the proximity metric, with the ap-
propriate nodeId prefix. As a result, in each step a message
is routed to a “nearby” node with a longer prefix match
(by one digit). This local heuristic obviously cannot achieve
globally shortest routes, but simulations have shown that
the average distance traveled by a message, in terms of the
proximity metric, is only 50% higher than the corresponding
“distance” of the source and destination in the underlying
network [27].

Moreover, since Pastry repeatedly takes a locally “short”
routing step towards a node that shares a longer prefix with
the fileId, messages have a tendency to first reach a node,
among the k nodes that store the requested file, that is near
the client, according to the proximity metric. One exper-
iment shows that among 5 replicated copies of a file, Pas-
try is able to find the “nearest” copy in 76% of all lookups
and it finds one of the two “nearest” copies in 92% of all
lookups [27].
Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in
the presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in full
detail in [27].

Briefly, an arriving node with the newly chosen nodeId
X can initialize its state by contacting a “nearby” node A
(according to the proximity metric) and asking A to route
a special message with the destination set to X. This mes-
sage is routed to the existing node Z with nodeId numer-
ically closest to X2. X then obtains the leaf set from Z,
the neighborhood set from A, and the ith row of the routing
table from the ith node encountered along the route from
A to Z. One can show that using this information, X can
correctly initialize its state and notify all nodes that need to
know of its arrival, thereby restoring all of Pastry’s invari-
ants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a period T , it is presumed
failed. All members of the failed node’s leaf set are then no-
tified and they update their leaf sets to restore the invariant.
Since the leaf sets of nodes with adjacent nodeIds overlap,
this update is trivial. A recovering node contacts the nodes
in its last known leaf set, obtains their current leafs sets,
updates its own leaf set and then notifies the members of
its new leaf set of its presence. Routing table entries that
refer to failed nodes are repaired lazily; the details are not
relevant to the subject of this paper [27].

Pastry, as described so far, is deterministic and thus vul-
nerable to malicious or failed nodes along the route that ac-
cept messages but do not correctly forward them. Repeated
queries could thus fail each time, since they are likely to take
the same route. To overcome this problem, the routing is ac-
tually randomized. To avoid routing loops, a message must
always be forwarded to a node that shares at least as long a
prefix with, but is numerically closer to the destination node
in the namespace than the current node. The choice among
multiple such nodes is random. In practice, the probabil-

2In the exceedingly unlikely event that X and Z are equal,
the new node must obtain a new nodeId.



Interfaces of Pastry

! route(M, X):  
- route message M to node with nodeId numerically 

closest to X 

! deliver(M):  
- deliver message M to application 

! forwarding(M, X):  
- message M is being forwarded towards key X 

! newLeaf(L):  
- report change in leaf set L to application 
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Insert Request Operation

! Compute fileId by hashing 

- file name 
- public key of client 

- some random numbers, called salt 
! Storage (k x filesize) 

- is debited against client‘s quota 
! File certificate 

- is produced and signed with owner‘s private key 
- contains fileID, SHA-1 hash of file‘s content, replciation factor k, the 

random salt, creation date, etc. 
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Insert Request Operation

! File and certificate are routed via Pastry 

• to node responsible for fileID 
! When it arrives in one node of the k nodes close to the fileId 

• the node checks the validityof the file 
• it is duplicated to all other k-1 nodes numerically close to fileId 

! When all k nodes have accepted a copy 
• Each nodes sends store receipt is send to the owner 

! If something goes wrong an error message is sent back 
• and nothing stored
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Lookup

! Client sends message with requested fileId into 
the Pastry network 

! The first node storing the file answers 
- no further routing 

! The node sends back the file 
! Locality property of Pastry helps to send a close-

by copy of a file
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Reclaim

! Client‘s nodes sends reclaim certificate 
- allowing the storing nodes to check that the claim is 

authentificated 

! Each node sends a reclaim receipt 
! The client sends this recept to the retrieve the 

storage from the quota management
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Security

! Smartcard 
- for PAST users which want to store files 
- generates and verifies all certificates 
- maintain the storage quotas 
- ensure the integrity of nodeID and fileID assignment 

! Users/nodes without smartcard 
- can read and serve as storage servers 

! Randomized routing 
- prevents intersection of messages 

! Malicious nodes only have local influence
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Storage Management

! Goals 
- Utilization of all storage  
- Storage balancing 
- Providing k file replicas 

! Methods 
- Replica diversion 

• exception to storing replicas nodes in the leafset 
- File diversion 

• if the local nodes are full all replicas are stored at different 
locations
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Causes of Storage Load Imbalance

! Statistical variation 
- birthday paradoxon (on a weaker scale) 

! High variance of the size distribution 
- Typical heavy-tail distribution, e.g. Pareto distribution 

! Different storage capacity of PAST nodes
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Heavy Tail Distribution

! Discrete Pareto Distribution for x ∈ {1,2,3,…}   

- with constant factor 

! Heavy tail 
- only for small k moments E[Xk] are defined 

- Expectation is defined only if α>2 
- Variance and E[X2] only exist if α>3 
- E[Xk] is defined ony if α>k+1 

! Often observed: 
- Distribution of wealth, sizes of towns, frequency of words, length of 

molecules, ...,  

- file length, WWW documents 
• Heavy-Tailed Probability Distributions in the World Wide Web, Crovella et 

al. 1996
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Per-Node Storage

! Assumption: 
- Storage of nodes differ by at most a factor of 100 

! Large scale storage 
- must be inserted as multiple PAST nodes 

! Storage control: 
- if a node storage is too large it is asked to split and 

rejoin 
- if a node storage is too small it is rejected
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Replica Diversion

! The first node close to the 
fileId checks whether it can 
store the file 
- if yes, it does and sends the 

store receipt 

! If a node A cannot store the 
file, it tries replica diversion 
- A chooses a node B in its leaf 

set which is not among the k 
closest asks B to store the copy 

- If B accepts, A stores a pointer 
to B and sends a store receipt 

! When A or B fails then the 
replica is inaccessible 
- failure probability is doubled
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Policies for Replica Diversion

! Acceptance of replicas at a node 
- If (size of a file)/(remaining free space) > t then reject the file 

• for different t`s for close nodes (tpri) and far nodes (tdiv), where 
tpri > tdiv 

- discriminates large files and far storage 
! Selecting a node to store a diverted replica 

- in the leaf set and 
- not in the k nodes closest to the fileId 
- do not hold a diverted replica of the same file 

! Deciding when to divert a file to different part of the Pastry ring 
- If one of the k nodes does not find a proxy node 
- then it sends a reject message 
- and all nodes for the replicas discard the file
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File Diversion

! If k nodes close to the chosen fileId 

- cannot store the file 
- nor divert the replicas locally in the 

leafset 
! then an error message is sent to the 

client 
! The client generates a new fileId 

using different salt 

- and repeats the insert operation up to 
3 times 

- then the operation is aborted and a 
failure is reported to the application 

! Possibly the application retries with 
small fragments of the file
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Maintaining Replicas

! Pastry protocols checks leaf set periodically 
! Node failure has been recognized 

• if a node is unresponsive for some certain time 
- Pastry triggers adjustment of the leaf set 

• PAST redistributes replicas 
- if the new neighbor is too full, then other nodes in the nodes will be 

uses via replica diversion 
! When a new node arrives 

- files are not moved, but pointers adjusted (replica diversion) 
- because of ratio of storage to bandwidth 
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File Encoding

! k replicas is not the best redundancy strategy 
! Using a Reed-Solomon encoding 

- with m additional check sum blocks to n original data blocks 
- reduces the storage overhead to (m+n)/n times the file size 

• if all m+n shares are distributed over different nodes 
- possibly speeds upt the access spee 

! PAST 
- does NOT use any such encoding techniques
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Caching

! Goal: 
- Minimize fetch distance 
- Maximize query throughput 
- Balance the query load 

! Replicas provide these features 
- Highly popular files may demand many more replicas 

• this is provided by cache management 

! PAST nodes use „unused“ portion to cache files 
- cached copies can be erased at any time 

• e.g. for storing primary of redirected replicas 

! When a file is routed through a node during lookup or 
insert it is inserted into the local cache 

! Cache replacement policy: GreedyDual-Size 
- considers aging, file size and costs of a file
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Experimental Results Caching
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Summary

! PAST provides a distributed storage system 
- which allows full storage usage and locality features 

! Storage management 
- based ond Smartcard system  

• provides a hardware restriction 
- utilization moderately increases failure rates and time 

behavior
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