

# Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG



# Cryptography in a Nutshelf $P = \frac{1}{2} \nu P$

- Symmetric Cryptography
  AES
  - Affine Cryptosystems
- Public-Key Cryptography
  - RSA
  - ElGamal
- Digital Signatures
- Public-Key-Exchange
  - Diffie-Hellman
- Interactive Proof Systems
  - Zero-Knowledge-Proofs
  - Secret Sharing
  - Secure Multi-Party Computation

Challenge - Respas-





Blakley 's Secret Sharing

- George Blakley, 1979
- Task
  - n persons have to share a secret

m = 5k = 2

- only when k of n persons are present the secret is allowed to be revealed
- Blakley 's scheme
  - in a k-dimensional space the intersection of k non-parallel k-1-dimensional spaces define a point
  - this point is the information
  - with k-1 sub-spaces one gets only a line
- Construction
  - A third (trusted) instance generate for a point n in R<sup>k</sup> k nonparallel k-1-dimensional hyper-spaces

UNI Freiburg

Freiburg

## Shamir's Secret Sharing Systems

- Adi Shamir, 1979
- Task
  - <u>n</u> persons have to share a secret s
  - only k out of n persons should be able to reveal this secret
- Construction of a trusted third party
  - chooses random numbers a1,...,ak-1
  - defines  $f(x) = s + a_1 x + a_2 x^2 + \ldots + a_{k-1} x^{k-1}$
  - chooses random x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>
  - sends (x<sub>i</sub>,f(x<sub>i</sub>)) to player i



## Shamir's Secret Sharing Systems

- If k persons meet
  - then they can compute the function f by the fundamental theorem of algebra
    - a polynomial of degree d is determined by d+1 values
  - for this they exchange their values and compute by interpolation
    - (e.g. using Lagrange polynoms)
- If k-1 persons meet
  - they cannot compute the secret at all
  - every value of s remains possible
- Usually, Shamir 's and Blakley 's scheme are used in finite fields
  - i.e. Galois fields (known from CRC)
  - this simplifies the computation and avoids rounding errors in the context of floating numbers

BURG







4 = 2X6B





2 Ø S-V S-1000  $\mathbf{V}$ 1000 S S-r, 8

$$\int_{\mathbf{CoNe}} \mathbf{CoNe} \qquad \qquad \int_{\mathbf{Freiburg}} f(t) = S + \alpha_1 t + \gamma_2 t$$







Dining Cryptographers

- Anonymous publications without any tracing possibility
- $n \ge 3$  cryptographers sit at a round table
- neighbored cryptographers can communicate secretly
- Each peer chooses secret number <u>xi</u> and communicates it to the right neighbor
- If i wants to send a message m
- he publishes  $s_i = x_i x_{i-1} + m$
- else
- he publishes  $s_i = x_i x_{i-1}$
- Now they compute the sum s=s<sub>1</sub>+...+s<sub>n</sub>
- if s=0 then there is no message
- else the sum of all messages



JNI REIBURG





### Encryption Methods

- Symmetric encryption algorithms, e.g.
  - Feistel cipher
  - DES (Digital Encryption Standard)
  - AES (Advanced Encryption Standard)
- Cryptographic hash function
  - SHA-1, SHA-2
  - MD5
- Asymmetric encryption
  - RSA (Rivest, Shamir, Adleman)
  - El-Gamal
- Digital signatures (electronic signatures)
  - PGP (Phil Zimmermann), RSA

(aesor

Smart gad



### Symmetric Encryption

- E.g. Caesar's code, DES, AES
- Functions f and g, where
  - Encryption f
    - f (key, text) = code
  - Decoding g:
    - g (key, code) = text
- The key
  - must remain secret
  - must be available to the sender and receiver



X @ Y @ Y = ×

- Splitting the message into two halves  $L_1$ ,  $R_1$  $17\left[\frac{R_{1}\cdot U_{1} + R_{1}\cdot h_{1}}{107}\right]$ 
  - Keys K<sub>1</sub>, K<sub>2</sub>, ...
  - Several rounds: Resulting code: Ln, Rn
- encoding
  - $L_i = R_{i-1}$
  - $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- Decryption
  - $R_{i-1} = Li$
  - $L_{i-1} = R_i \oplus f(L_i, K_i)$
- f may be any complex function





### Other Symmetric Codes

#### Skipjack

- 80-bit symmetric code
- is based on Feistel Cipher
- low security

#### RC5

- 1-2048 bits key length
- Rivest code 5 (1994)
- Several rounds of the Feistel cipher



### Digital Encryption Standard

- Carefully selected combination of
  - *<sup>o</sup>* Xor operations
  - Feistel cipher
  - permutations
  - f table lookups
  - used 56-bit key
- 1975 developed at IBM
  - Now no longer secure
  - more powerful computers
  - New knowledge in cryptology
- Succeeded by: AES (2001)



## Advanced Encryption Standard

- Carefully selected combination of
  - A Xor operations
  - Feistel cipher
  - permutations
  - table lookups
  - multiplication in GF [2<sup>8</sup>]
  - 128, 192 or 256-bit symmetric key
- Joan Daemen and Vincent Rijmen
  - 2001 were selected as AES, among many
  - still considered secure





Cryptographic Hash Function

#### messag digest 5

- E.g. SHA-1, SHA-2, MD5
- A cryptographic hash function h maps a text to a fixed-length code, so that
  - h(text) = code
  - it is impossible to find another text:
    - h(text') = h(text) and text ≠ text'
- Possible solution:
  - Using a symmetric cipher





#### CoNe Freiburg

#### Chaum 's Mix-Cascades

- All peers
  - publish the public keys
  - are known in the network
- The sender p<sub>1</sub> now chooses a route
  - p<sub>1</sub>, r<sub>1</sub>, r<sub>2</sub>, r<sub>3</sub>, ..., p<sub>2</sub>
- The sender encrypts m according to the public keys from
  - p<sub>2</sub>, ... r<sub>3</sub>, r<sub>2</sub>, r<sub>1</sub>
  - and sends the message
  - $f(pk_{k1}, (r_2, f(pk_{r2}, ..., f(pk_{rk}, (p_2, f(pk_{p2}, m))))))))$
  - to r<sub>1</sub>

• • • •

- r<sub>1</sub> encrypts the code, deciphers the next hop r<sub>2</sub> and sends it to him
- until p<sub>2</sub> receives the message and deciphers it





### Chaum 's Mix Cascades

- No peer on the route
  - knows its position on the route
  - can decrypt the message
  - knows the final destination
- The receiver does not know the sender
- In addition peers may voluntarily add detour routes to the message
- Chaum 's Mix Cascades
  - aka. Mix Networks or Mixes
  - is safe against all sort of attacks,
  - but not against traffic analysis



UNI







- David Goldschlag, Michael Reed, and Paul Syverson, 1998
- Goal
  - Preserve private sphere of sender and receiver of a message
  - Safety of the transmitted message
- Prerequisite
  - special infrastructure (Onion Routers)
    - all except some smaller number of exceptions cooperate



- Method
  - Mix Cascades (Chaum)
  - P- Message is sent from source to the target using proxies (Onion Routers)
  - Onion Routers unpredictably choose other routers as intermediate routers
  - Between sender, Onion Routers, and receiver the message is encrypted using symmetric cryptography
- Every Onion Router only knows the next station
  - The message is encoded like an onion
- TOR is meant as an infrastructure improvement of the Internet
  - not meant as a peer-to-peer network
  - yet, often used from peer-to-peer networks

25



## Other Work based on Onion Routing

#### Crowds

- Reiter & Rubin 1997
- anonymous web-surfing based on Onion Routers
- Hordes
  - Shields, Levine 2000
  - uses sub-groups to improve Onion Routing
- Tarzan
  - Freedman, 2002
  - A Peer-to-Peer Anonymizing Network Layer
  - uses UDP messages and Chaum Mixes in group to anonymize Internet traffic
  - adds fake traffic against timing attacks



Pseudonym

- Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore Hong, 2000
- Goal
  - peer-to-peer network
  - allows publication, replication, data lookup
  - **b** anonymity of authors and readers
- Files
  - are encoding location independent
    - by encrypted and pseudonymously signed index files
    - author cannot be identified
  - are secured against unauthorized change or deletion
  - are encoded by keys unknown by the storage peer
    - secret keys are stored elsewhere
  - are replicated
    - on the look up path
  - and erased using "Least Recently Used" (LRU) principle



- Network Structure
  - is similar to Gnutella
  - Free-Net is like Gnutella Pareto distributed
- Storing Files
  - Bach file can be found, decoded and read using the encoded address string and the signed subspace key,
  - Each file is stored together with the information of the index key but without the encoded address string
  - The storage peer cannot read his files
    - unless he tries out all possible keywords (dictionary attack)
- Storing of index files
  - The address string coded by a cryptographic secure hash function leads to the corresponding peer
    - who stores the index data
      - address string
      - and signed subspace key
  - Using this index file the original file can be found

Free-Net CoNe Freiburg





- Lookup
  - steepest-ascent hill-climbing
    - lookup is forwarded to the peer whose ID is closest to the search index
  - with TTL field
    - i.e. hop limit
- Files are moved to new peers
  - when the keyword of the file is similar to the neighbor's ID
- New links
  - are created if during a lookup close similarities between peer IDs are discovered



- Network structure of Free-Net is similar to Gnutella
- The lookup time is polynomial on the average



Figure 2. Degree distribution among Freenet nodes. The network shows a close fit to a power-law distribution.



Figure 3. Request path length versus network size. The median path length in the network scales as N<sup>0.28</sup>.



#### Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG