

Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG

- Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore Hong, 2000
- Goal
 - peer-to-peer network
 - allows publication, replication, data lookup
 - •- anonymity of authors and readers
- Files
 - are encoding location independent
 - by encrypted and pseudonymously signed index files
 - author cannot be identified
 - are secured against unauthorized change or deletion
 - are encoded by keys unknown by the storage peer
 - secret keys are stored elsewhere
 - are replicated
 - on the look up path
 - and erased using "Least Recently Used" (LRU) principle

- Network Structure
 - ☞ is similar to Gnutella
 - Free-Net is like Gnutella Pareto distributed
- Storing Files
 - Each file can be found, decoded and read using the encoded address string and the signed subspace key
 - Each file is stored together with the information of the index key but without the encoded address string
 - The storage peer cannot read his files
 - unless he tries out all possible keywords (dictionary attack)
- Storing of index files
 - The address string coded by a cryptographic secure hash function leads to the corresponding peer
 - who stores the index data
 - address string
 - and signed subspace key
 - Using this index file the original file can be found

Free-Net CoNe Freiburg

UNI FREIBURG

Lookup

- steepest-ascent hill-climbing
 - lookup is forwarded to the peer whose ID is closest to the search index
- with TTL field
 - i.e. hop limit
- Files are moved to new peers
 - when the keyword of the file is similar to the neighbor's ID
- New links
 - are created if during a lookup close similarities between peer IDs are discovered

JNI FREIBURG

Figure 2. Degree distribution among Freenet nodes. The network shows a close fit to a power-law distribution.

Figure 3. Request path length versus network size. The median path length in the network scales as N^{0.28}.

 $(h_{\theta}A : O(l_{og}m))$ $(AN \cdot O(m^{1/d}))$

0.18~ 6

Dark-Net & Friend-to-Friend

- Dark-Net is a private Peer-to-Peer Network
 - Members can trust all other members
 - E.g.
 - friends (in real life)
 - sports club
- Dark-Net control access by
 - secret addresses,
 - secret software,
 - authentication using password, or
 - central authentication
- Example:
 - WASTE
 - P2P-Filesharing up to 50 members
 - by Nullsoft (Gnutella)
 - CSpace
 - using Kademlia

~ Bittorrat Sync

CoNe Freiburg

Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006
- Trusted certification
 - only approach to completely eleminate Sybil attacks
 - according to Douceur
 - relies on centralized authority
- No solution
 - know the problem and deal with the consequences
- Resource testing
 - ┍- real world friends
 - test for real hardware or addresses
 - e.g. heterogeneous IP addresses
 - check for storing ability
- Recurring cost and fees
 - give the peers a periodic task to find out whether there is real hardware behind each peer
 wasteful use of resources
 - charge each peer a fee to join the network
- Trusted devices
 - use special hardware devices which allow to connect to the network

-> Skype - rentral (covice

CoNe Freiburg

Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006
- In Mobile Networks
 - Ouse observations of the mobile node
 - e.g. GPS location, neighbor nodes, etc.
- Auditing
 - perform tests on suspicious nodes
 - or reward a peer who proves that it is not a clone peer
- Reputation Systems
 - assign each peer a reputation which grows over the time with each positive fact
 - the reputation indicates that this peer might behave nice in the future
 - Disadvantage:
 - peers might pretend to behave honestly to increase their reputation and change their behavior in certain situations
 - problem of Byzantine behavior

The Problem of Byzantine Generals Distributed Systems Byzanz

- 3 armies prepare to attack a castle
- They are separated and communicate by messengers
- If one army attacks alone, it loses
- If two armies attack, they win
- If nobody attacks the castle is besieged and they win
- One general is a renegade
 - nobody knows who

Non tallach

atad

INI

The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X's command
- B tells B about his version of X's command
 - contradiction
- But is A, B, or X lying?

The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X's command
- B tells B about his version of X's command

Proct.

inen/

- contradiction
- But is A, B, or X lying?

Attack

(vyptogapty

Byzantine Agreement

Theorem

- The problem of three byzantine generals cannot be solved (without cryptography)
- It can be solved for 4 generals
- Consider: 1 general, 3 officers problem
 - If the general is loyal then all loyal officers will obey the command
 - In any case distribute the received commands to all fellow officers
 - What if the general is the renegade?

CoNe Freiburg

Byzantine Agreement

Theorem

 The problem of four byzantine generals can be solved (without cryptography)

Algorithm

- General A sends his command to all other generals
 - A sticks to his command if he is honest
- All other generals forward the received commands to all other generals
- Every generals computes the majority decision of the received commands and follows this command

CoNe Freiburg

Byzantine Agreement

Theorem

 The problem of four byzantine generals can be solved (without cryptography)

Algorithm

- General A sends his command to all other generals
 - A sticks to his command if he is honest
- All other generals forward the received command to all other generals
- Every generals computes the majority decision of the received commands and follows this command

- Theorem
 - If <u>m</u> generals are traitors then <u>2m+1</u> generals must be honest to get a Byzantine Agreement
- This bound is sharp if one does not rely on cryptography
- Theorem
 - If a digital signature scheme is working, then an arbitrarily large number of betraying generals can be dealt with
- Solution
 - Every general signs his command
 - All commands are shared together with the signature
 - Inconsistent commands can be detected
 - The evildoer can be exposed

19

P2P and Byzantine Agreement

- Digital signature can solve the problem of malign peers
- Problem: Number of messages
 - $O(n^2)$ messages in the whole network (for n peers)
- In "Scalable Byzantine Agreement" von Clifford Scott Lewis und Jared Saia, 2003
 - a scalable algorithm was presented
 - can deal with n/6 evil peers
 - if they do not influence the network structure
 - use only $O(\log n)$ messages per node in the expectation
 - find agreement with high probability

UNI FREIBURG

Network of Lewis and Saia

- Butterfly network with clusters of size c log n
 - clusters are bipartite expander graphs
 - Bipartite graph

CoNe

Freiburg

- is a graph with disjoint node sets A and B where no edges connect the nodes within A or within B
- Expander graph
 - A bipartite graph is an expander graph if for each subset X of A the number of neighbors in B is at least c|X| for a fixed constant c>0
 - and vice versa for the subsets in B

Advantage

- 11
- Very efficient, robust and simple method
- Disadvantage
 - Strong assumptions
 - The attacker does not know the internal network structure
- If the attacker knows the structure
 - Eclipse attack!

X

UNI FREIBURG

(ochou

UNI FREIBURG

Cuckoo Hashing for Security

- <u>Awerbuch</u>, Scheideler, Towards Scalable and Robust Overlay Networks
- Problem:
 - Rejoin attacks
- Solution:
 - Chord network combined with
 - Cuckoo Hashing
 - Majority condition:
 - honest peers in the neighborhood are in the majority
 - Data is stored with O(log n) copies

CoNe Freiburg

Cuckoo Hashing

Fig. 1. Examples of CUCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Key x is successfully inserted by moving keys y and z from one table to the other. (b) Key x cannot be accommodated and a rehash is necessary.

VUUUU

From Cuckoo Hashing Rasmus Pagh, Flemming Friche Rodler 2004

26

A Efficiency of Cuckoo Hashing Freiburg

- Theorem
 - Let ϵ >0 then if at most n elements are stored, then Cuckoo Hashing needs a hash space of 2n+ ϵ .
- Three hash functions increase the load factor from 1/2 to 91%
- Insert
 - needs O(1) steps in the expectation
 - O(log n) with high probability
- Lookup
 - needs two steps

JNI REIBURG

- Ion Stoica, Robert Morris, David Karger, M. Frans
 Kaashoek and Hari
 Balakrishnan (2001)
- Distributed Hash Table
 - range {0,...,2^m-1}
 - for sufficient large m
- for this work the range is seen as [0,1)
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance

Lookup in Chord CoNe Freiburg

Data Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all $i \in \{0,..,m\text{-}1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)s
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers

32

Cuckoo Hashing for Security

- Given n honest peers and c n dishonest peers
- Goal
 - For any adversarial attack the following properties for every interval $I \subseteq [0, 1)$ of size at least (c log n)/n we have
 - Balancing condition
 - I contains Θ(|I| · n) nodes
 - Majority condition
 - the honest nodes in I are in the majority
- Then all majority decisions of O(log n) nodes give a correct result

Rejoin Attacks

- Secure hash functions for positions in the Chord
 - if one position is used
 - then in an O(log n) neighborhood more than half is honest
 - if more than half of al peers are honest
- Rejoin attacks
 - use a small number of attackers
 - check out new addresses until attackers fall in one interval
 - then this neighborhood can be ruled by the attackers

The Cuckoo Rule for Chord

- Notation
 - a region is an interval of size 1/2^r in [0, 1) for some integer r that starts at an integer multiple of 1/2^r
 - There are exactly 2^r regions
 - A k-region is a region of size (closest from above to) k/n, and for any point x ∈ [0, 1)
 - the k-region $R_k(x)$ is the unique k-region containing x.
- Cuckoo rule
 - If a new node v wants to join the system, pick a random $x \in [0, 1)$.
 - Place v into x and move all nodes in R_k(x) to points in [0, 1) chosen uniformly at random
 - (without replacing any further nodes).
- Theorem
 - For any constants ε and k with ε < 1-1/k, the cuckoo rule with parameter k satisfies the balancing and majority conditions for a polynomial number of rounds, with high probability, for any adversarial strategy within our model.
 - The inequality $\epsilon < 1 1/k$ is sharp

Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG