

Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG

Cuckoo Hashing for Security

- Awerbuch, Scheideler, Towards Scalable and Robust Overlay Networks
- Problem:
 - Rejoin attacks
- Solution:
 - Chord network combined with
 - Cuckoo Hashing
 - Majority condition:
 - honest peers in the neighborhood are in the majority
 - Data is stored with O(log n) copies

CoNe Freiburg

Cuckoo Hashing

Fig. 1. Examples of CUCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Key x is successfully inserted by moving keys y and z from one table to the other. (b) Key x cannot be accommodated and a rehash is necessary.

VUUUU

From Cuckoo Hashing Rasmus Pagh, Flemming Friche Rodler 2004

3

A Efficiency of Cuckoo Hashing Freiburg

- Theorem
 - Let ε>0 then if at most n elements are stored, then Cuckoo Hashing needs a hash space of 2n+ε.
- Three hash functions increase the load factor from 1/2 to 91%

Insert

- needs O(1) steps in the expectation
- O(log n) with high probability
- Lookup
 - needs two steps

REIBURG

- Ion Stoica, Robert Morris, David Karger, M. Frans
 Kaashoek and Hari
 Balakrishnan (2001)
- Distributed Hash Table
 - range {0,...,2^m-1}
 - for sufficient large m
- for this work the range is seen as [0,1)
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance

Lookup in Chord CoNe Freiburg

6

Data Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all $i \in \{0,..,m\text{-}1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)s
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers

Cuckoo Hashing for Security

- Given n honest peers and c n dishonest peers
- Goal
 - For any adversarial attack the following properties for every interval $I \subseteq [0, 1)$ of size at least (c log n)/n we have
 - Balancing condition
 - I contains Θ(|I| · n) nodes
 - Majority condition
 - the honest nodes in I are in the majority
- Then all majority decisions of O(log n) nodes give a correct result

- Secure hash functions for positions in the Chord
 - if one position is used
 - then in an O(log n) neighborhood more than half is honest
 - if more than half of al peers are honest
- Rejoin attacks
 - use a small number of attackers
 - check out new addresses until attackers fall in one interval
 - then this neighborhood can be ruled by the attackers

Jekoo

Kuchuch

The Cuckoo Rule for Chord

- Notation
 - a region is an interval of size 1/2^r in [0, 1) for some integer r that starts at an integer multiple of 1/2^r
 - There are exactly 2^{r} regions
 - A k-region is a region of size (closest from above to) k/n, and for any point x ∈ [0, 1)
 - the k-region $R_k(x)$ is the unique k-region containing x.
- Cuckoo rule
 - If a new node v wants to join the system, pick a random $x \in [0, 1)$.
 - Place v into x and move all nodes in R_k(x) to points in [0, 1) chosen uniformly at random
 - (without replacing any further nodes).
- Theorem
 - For any constants ε and k with ε < 1-1/k, the cuckoo rule with parameter k satisfies the balancing and majority conditions for a polynomial number of rounds, with high probability, for any adversarial strategy within our model.
 - The inequality $\epsilon < 1 1/k$ is sharp

٦Č

- Data storage
 - each data item is stored in the O(log³ n) neighborhood as copies
- Primitives
 - robust hash functions
 - safe against attacks
 - majority decisions of each operation
 - use multiple routes for targeting location

- Lookup
 - works correctly with high probability
 - can be performed with O(log⁵n) messages
- Inserting of data
 - works in polylogarithmic time
 - needs O(log⁵ n) messages
- Copies stored of each data: O(log³n)

17

- Advantage
 - Cuckoo Chord is safe against adversarial attacks
 - Cuckoo rule is simple and effective
- Disadvantage
 - Computation of secure hash function is complex
 - Considerate overhead for communication
- Theoretical breakthrough
- Little impact to the practical world

Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG