

Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

UNI FREIBURG

Motivation for Anonymity

- Society
 - Free speech is only possible if the speaker does not suffer negative consequences
 - Thus, only an anonymous speaker has truly free speech
- Copyright infringement
 - Copying items is the best (and most) a computer can do
 - Copyright laws restrict copying
 - Users of file sharing systems do not want to be penalized for their participation or behavior
- Dictatorships
 - A prerequisite for any oppressing system is the control of information and opinions
 - Authors, journalists, civil rights activists like all citizens should be able to openly publish documents without the fear of penalty
- Democracies
 - Even in many democratic states certain statements or documents are illegitimate, e.g.
 - (anti-) religious statements
 - insults (against the royalty)
 - certain types of sexual contents
 - political statements (e.g. for fascism, communism, separation, revolution)
- A anonymizing P2P network should secure the privacy and anonymity of each user without endangering other users

UNI FREIBURG

From

- Danezis, Diaz, A Survey of Anonymous Communication Channels
- Pfitzmann, Hansen, Anonymity, Unobservability and Pseudonymity A Proposal for Terminology
- Anonymity (Pfitzmann-Hansen 2001)
 - describes the state of being not identifiable within a larger set of subjects (peers), i.e.
 - the anonymity set
 - The anonymity set can be all peers of a peer-to-peer network
 - yet can be another (smaller or larger) set

FREIBURG

- Unlinkability
 - Absolute (ISO15408)
 - "ensures that a user may make multiple uses of resources or services without other being able to link these uses together."
 - Relative
 - Any attacker cannot find out more about the connections of the uses by observing the system
 - a-priori knowledge = a-posteriori knowledge

- Unobservability
 - The items of interests are protected
 - The use or non-use of any service cannot be detected by an observer (attacker)
- Pseudonymity
 - is the use of pseudonyms as IDs
 - preserves accountability and trustability while preserving anonymity

- Denial-of-Service Attacks (DoS)
 - or distributed denial of service attacks (DDoS)
 - one or many peers ask for a document
 - peers are slowed down or blocked completely
- Sybil Attacks
 - one attacker produces many fake peers under new IP addresses
 - or the attacker controls a bot-net
- Use of protocol weaknesses
- Infiltration by malign peers
 - Byzantine Generals

6

- Timing attacks
 - messages are slowed down
 - communication line is slowed down
 - a connection between sender and receiver can be established
- Poisoning Attacks
 - provide false information
 - wrong routing tables, wrong index files etc.
- Eclipse Attack
 - attack the environment of a peer
 - disconnect the peer
 - build a fake environment
- Surveillance
 - full or partial

7

Cryptography in a Nutshelf

- Symmetric Cryptography
 - AES
 - Affine Cryptosystems
- Public-Key Cryptography
 - RSA
 - ElGamal
- Digital Signatures
- Public-Key-Exchange
 - Diffie-Hellman
- Interactive Proof Systems
 - Zero-Knowledge-Proofs
 - Secret Sharing
 - Secure Multi-Party Computation

Blakley's Secret Sharing

- George Blakley, 1979
- Task
 - n persons have to share a secret
 - only when k of n persons are present the secret is allowed to be revealed
- Blakley's scheme
 - in a k-dimensional space the intersection of k non-parallel k-1-dimensional spaces define a point
 - this point is the information
 - with k-1 sub-spaces one gets only a line
- Construction
 - A third (trusted) instance generate for a point n in R^k k non-parallel k-1-dimensional hyper-spaces

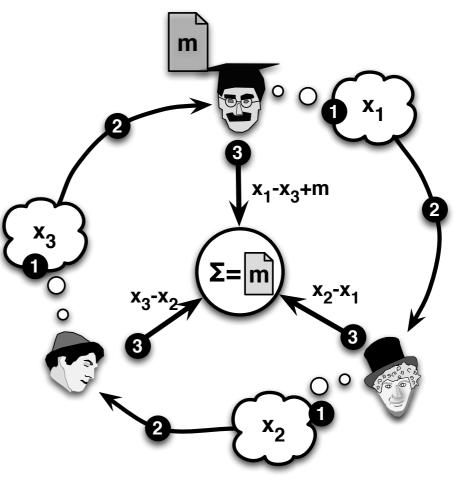
UNI FREIBURG

Shamir's Secret Sharing Systems

- Adi Shamir, 1979
- Task
 - n persons have to share a secret s
 - only k out of n persons should be able to reveal this secret
- Construction of a trusted third party
 - chooses random numbers a1,...,ak-1
 - defines

$$f(\mathbf{x}) = \mathbf{s} + \mathbf{a}_1 x + a_2 x^2 + \dots + a_{k-1} x^{k-1}$$

- chooses random x₁, x₂, ..., x_n
- sends (x_i,f(x_i)) to player i


Shamir's Secret Sharing Systems

- If k persons meet
 - then they can compute the function f by the fundamental theorem of algebra
 - a polynomial of degree d is determined by d+1 values
 - for this they exchange their values and compute by interpolation
 - (e.g. using Lagrange polynoms)
- If k-1 persons meet
 - they cannot compute the secret at all
 - every value of s remains possible
- Usually, Shamir's and Blakley's scheme are used in finite fields
 - i.e. Galois fields (known from CRC)
 - this simplifies the computation and avoids rounding errors in the context of floating numbers

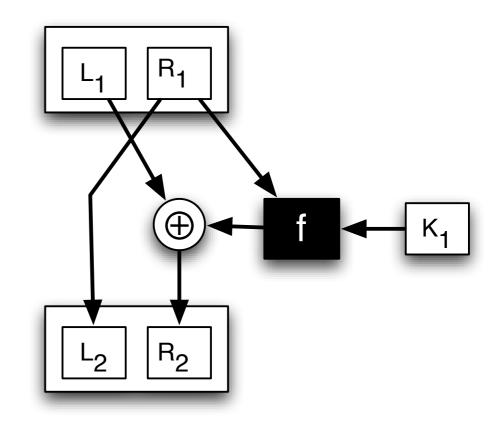
Dining Cryptographers

- Anonymous publications without any tracing possibility
- $n \ge 3$ cryptographers sit at a round table
- neighbored cryptographers can communicate secretly
- Each peer chooses secret number x_i and communicates it to the right neighbor
- If i wants to send a message m
- he publishes $s_i = x_i x_{i-1} + m$
- else
- he publishes $s_i = x_i x_{i-1}$
- Now they compute the sum s=s₁+...+s_n
- if s=0 then there is no message
- else the sum of all messages

UNI FREIBURG

Encryption Methods

- Symmetric encryption algorithms, e.g.
 - Feistel cipher
 - DES (Digital Encryption Standard)
 - AES (Advanced Encryption Standard)
- Cryptographic hash function
 - SHA-1, SHA-2
 - MD5
- Asymmetric encryption
 - RSA (Rivest, Shamir, Adleman)
 - El-Gamal
- Digital signatures (electronic signatures)
 - PGP (Phil Zimmermann), RSA


A Symmetric Encryption Freiburg

- E.g. Caesar's code, DES, AES
- Functions f and g, where
 - Encryption f
 - f (key, text) = code
 - Decoding g:
 - g (key, code) = text
- The key
 - must remain secret
 - must be available to the sender and receiver

FREIBURG

- Splitting the message into two halves L₁, R₁
 - Keys $K_1, K_2, ...$
 - Several rounds: Resulting code: Ln, Rn
- encoding
 - $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- Decryption
 - R_{i-1} = Li
 - $L_{i-1} = R_i \oplus f(L_i, K_i)$
- f may be any complex function

Other Symmetric Codes

- Skipjack
 - 80-bit symmetric code
 - is based on Feistel Cipher
 - low security
- RC5
 - 1-2048 bits key length
 - Rivest code 5 (1994)
 - Several rounds of the Feistel cipher

Digital Encryption Standard

- Carefully selected combination of
 - Xor operations
 - Feistel cipher
 - permutations
 - table lookups
 - used 56-bit key
- 1975 developed at IBM
 - Now no longer secure
 - more powerful computers
 - New knowledge in cryptology
- Succeeded by: AES (2001)

JNI REIBURG

Advanced Encryption Standard

Carefully selected combination of

- Xor operations
- Feistel cipher
- permutations
- table lookups
- multiplication in GF [28]
- 128, 192 or 256-bit symmetric key
- Joan Daemen and Vincent Rijmen
 - 2001 were selected as AES, among many
 - still considered secure

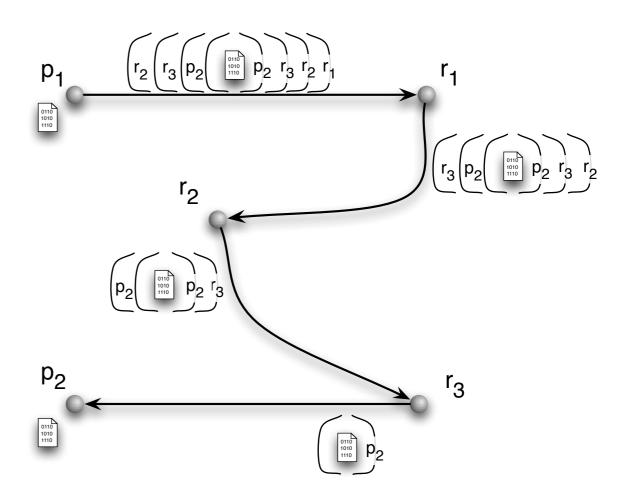
INI

Cryptographic Hash Function

- E.g. SHA-1, SHA-2, MD5
- A cryptographic hash function h maps a text to a fixed-length code, so that
 - h(text) = code
 - it is impossible to find another text:
 - h(text') = h(text) and text ≠ text'
- Possible solution:
 - Using a symmetric cipher

Asymmetric Encryption

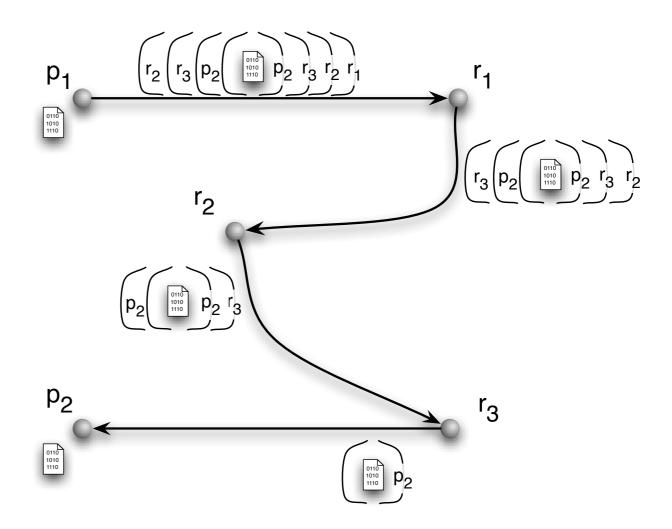
- E.g. RSA, Ronald Rivest, Adi Shamir, Lenard Adleman, 1977
 - Diffie-Hellman, PGP
- Secret key: sk
 - Only the receivers of the message know the secret key
- Public key: pk
 - All participants know this key
- Generated by
 - keygen(sk) = pk
- Encryption function f and decryption function g
 - Known to everybody
- Encryption
 - f(pk,text) = code
 - everybody can generate code
- Decryption
 - g(sk,code) = code
 - only possibly by receiver


Chaum's Mix-Cascades

- All peers
 - publish the public keys
 - are known in the network
- The sender p₁ now chooses a route
 - $p_1, r_1, r_2, r_3, ..., p_2$
- The sender encrypts m according to the public keys from
 - p₂, ... r₃, r₂, r₁
 - and sends the message
 - $f(pk_{k1}, (r_{2}, f(pk_{r2}...f(pk_{rk}, (p_{2}, f(pk_{p2}, m)))...)))))$

- to r₁

- r₁ encrypts the code, deciphers the next hop r₂ and sends it to him
- until na re


 until p₂ receives the message and deciphers it

Chaum's Mix Cascades

- No peer on the route
 - knows its position on the route
 - can decrypt the message
 - knows the final destination
- The receiver does not know the sender
- In addition peers may voluntarily add detour routes to the message
- Chaum's Mix Cascades
 - aka. Mix Networks or Mixes
 - is safe against all sort of attacks,
 - but not against traffic analysis

TOR - Onion Routers

- David Goldschlag, Michael Reed, and Paul Syverson, 1998
- Goal
 - Preserve private sphere of sender and receiver of a message
 - Safety of the transmitted message
- Prerequisite
 - special infrastructure (Onion Routers)
 - all except some smaller number of exceptions cooperate

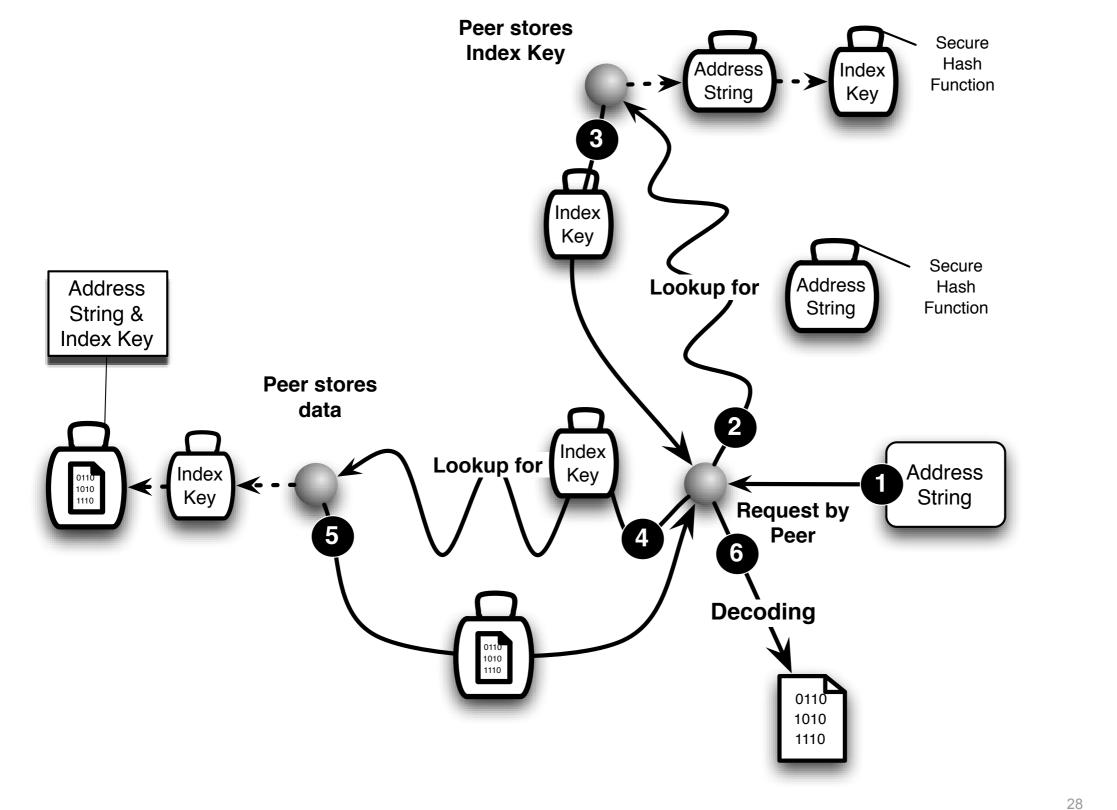
- Method
 - Mix Cascades (Chaum)
 - Message is sent from source to the target using proxies (Onion Routers)
 - Onion Routers unpredictably choose other routers as intermediate routers
 - Between sender, Onion Routers, and receiver the message is encrypted using symmetric cryptography
 - Every Onion Router only knows the next station
 - The message is encoded like an onion
- TOR is meant as an infrastructure improvement of the Internet
 - not meant as a peer-to-peer network
 - yet, often used from peer-to-peer networks

24

Other Work based on Onion Routing

Crowds

- Reiter & Rubin 1997
- anonymous web-surfing based on Onion Routers
- Hordes
 - Shields, Levine 2000
 - uses sub-groups to improve Onion Routing
- Tarzan
 - Freedman, 2002
 - A Peer-to-Peer Anonymizing Network Layer
 - uses UDP messages and Chaum Mixes in group to anonymize Internet traffic
 - adds fake traffic against timing attacks



- Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore Hong, 2000
- Goal
 - peer-to-peer network
 - allows publication, replication, data lookup
 - anonymity of authors and readers
- Files
 - are encoding location independent
 - by encrypted and pseudonymously signed index files
 - author cannot be identified
 - are secured against unauthorized change or deletion
 - are encoded by keys unknown by the storage peer
 - secret keys are stored elsewhere
 - are replicated
 - on the look up path
 - and erased using "Least Recently Used" (LRU) principle

- Network Structure
 - is similar to Gnutella
 - Free-Net is like Gnutella Pareto distributed
- Storing Files
 - Each file can be found, decoded and read using the encoded address string and the signed subspace key
 - Each file is stored together with the information of the index key but without the encoded address string
 - The storage peer cannot read his files
 - unless he tries out all possible keywords (dictionary attack)
- Storing of index files
 - The address string coded by a cryptographic secure hash function leads to the corresponding peer
 - who stores the index data
 - address string
 - and signed subspace key
 - Using this index file the original file can be found

Free-Net CoNe Freiburg

FREIBURG

- Lookup
 - steepest-ascent hill-climbing
 - lookup is forwarded to the peer whose ID is closest to the search index
 - with TTL field
 - i.e. hop limit
- Files are moved to new peers
 - when the keyword of the file is similar to the neighbor's ID
- New links
 - are created if during a lookup close similarities between peer IDs are discovered

UNI FREIBURG

- Network structure of Free-Net is similar to Gnutella
- The lookup time is polynomial on the average

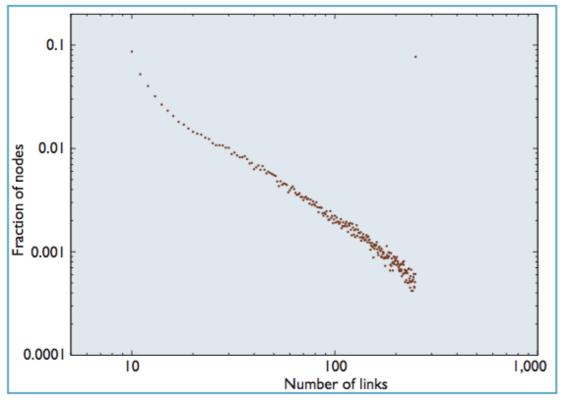


Figure 2. Degree distribution among Freenet nodes. The network shows a close fit to a power-law distribution.

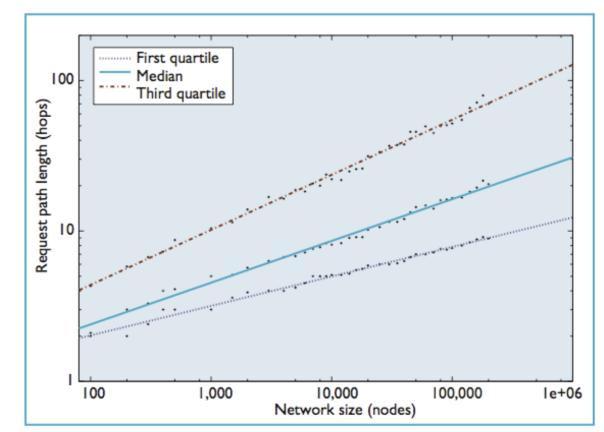


Figure 3. Request path length versus network size. The median path length in the network scales as N^{0.28}.

Dark-Net & Friend-to-Friend

- Dark-Net is a private Peer-to-Peer Network
 - Members can trust all other members
 - E.g.
 - friends (in real life)
 - sports club
- Dark-Net control access by
 - secret addresses,
 - secret software,
 - authentication using password, or
 - central authentication
- Example:
 - WASTE
 - P2P-Filesharing up to 50 members
 - by Nullsoft (Gnutella)
 - CSpace
 - using Kademlia

CoNe Freiburg

Solutions to the Sybil Attack

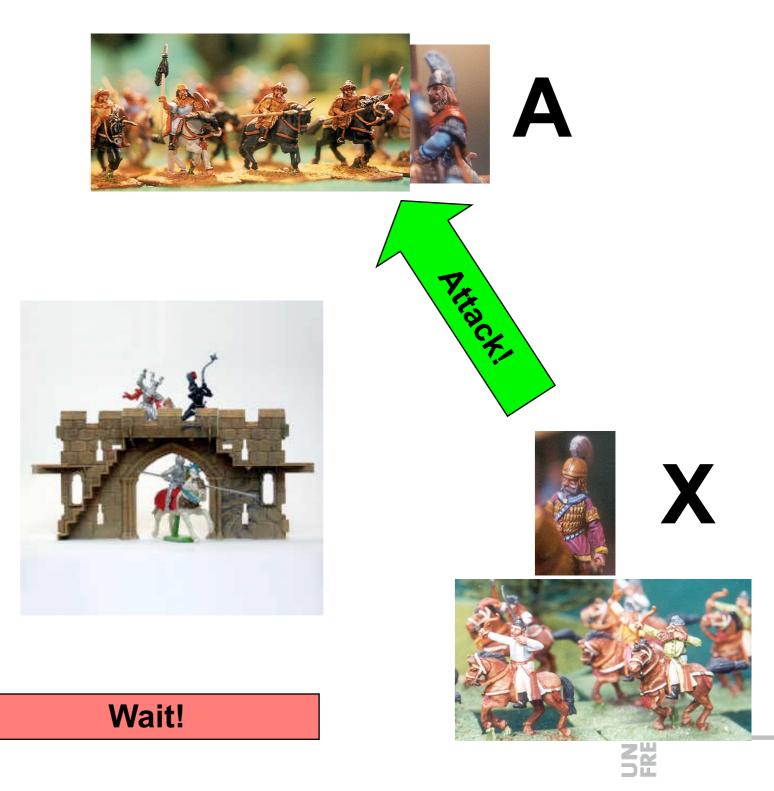
- Survey paper by Levine, Shields, Margonin, 2006
- Trusted certification
 - only approach to completely eleminate Sybil attacks
 - according to Douceur
 - relies on centralized authority
- No solution
 - know the problem and deal with the consequences
- Resource testing
 - real world friends
 - test for real hardware or addresses
 - e.g. heterogeneous IP addresses
 - check for storing ability
- Recurring cost and fees
 - give the peers a periodic task to find out whether there is real hardware behind each peer
 - wasteful use of resources
 - charge each peer a fee to join the network
- Trusted devices
 - use special hardware devices which allow to connect to the network

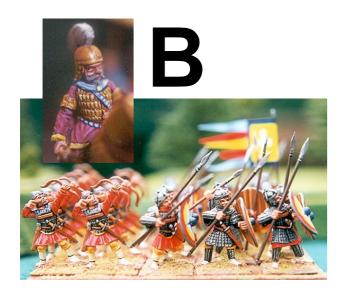
Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006
- In Mobile Networks
 - use observations of the mobile node
 - e.g. GPS location, neighbor nodes, etc.
- Auditing
 - perform tests on suspicious nodes
 - or reward a peer who proves that it is not a clone peer
- Reputation Systems
 - assign each peer a reputation which grows over the time with each positive fact
 - the reputation indicates that this peer might behave nice in the future
 - Disadvantage:
 - peers might pretend to behave honestly to increase their reputation and change their behavior in certain situations
 - problem of Byzantine behavior

The Problem of Byzantine Generals

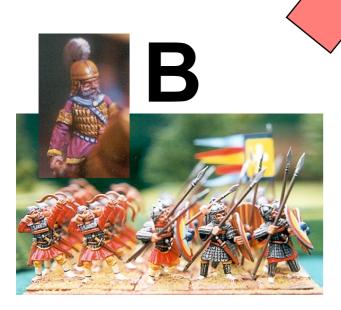
- 3 armies prepare to attack a castle
- They are separated and communicate by messengers
- If one army attacks alone, it loses
- If two armies attack, they win
- If nobody attacks the castle is besieged and they win
- One general is a renegade
 - nobody knows who





The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X's command
- B tells B about his version of X's command
 - contradiction
- But is A, B, or X lying?


The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X's command
- B tells B about his version of X's command

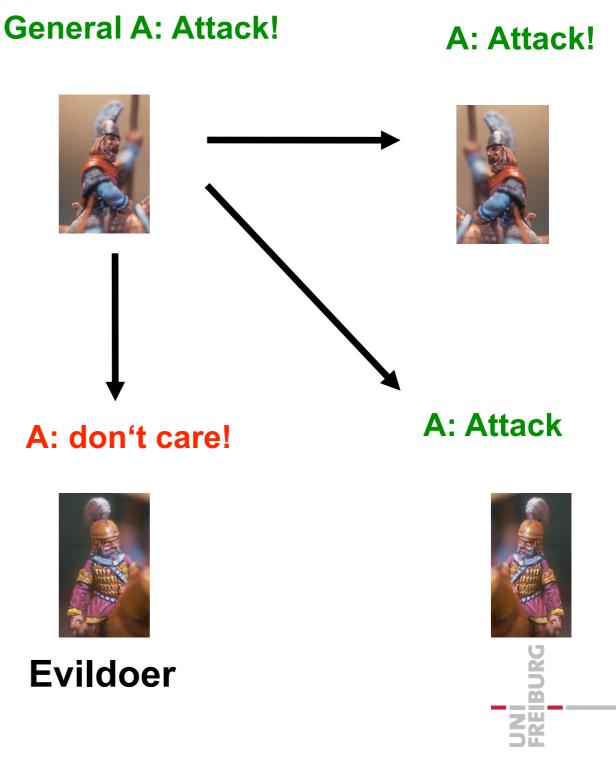
Prisch.

ilien

- contradiction
- But is A, B, or X lying?

Pttack!

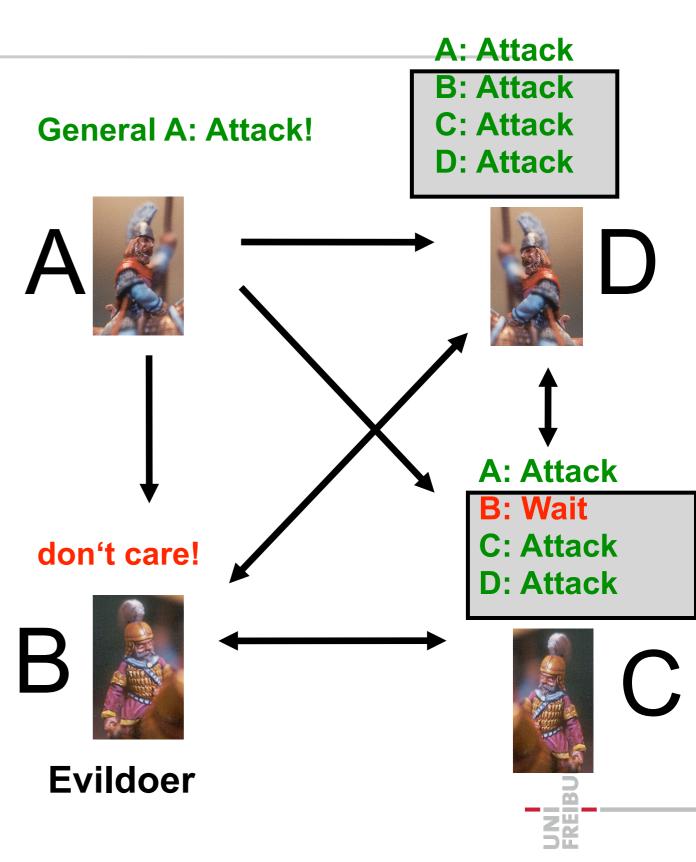
36


52

Byzantine Agreement

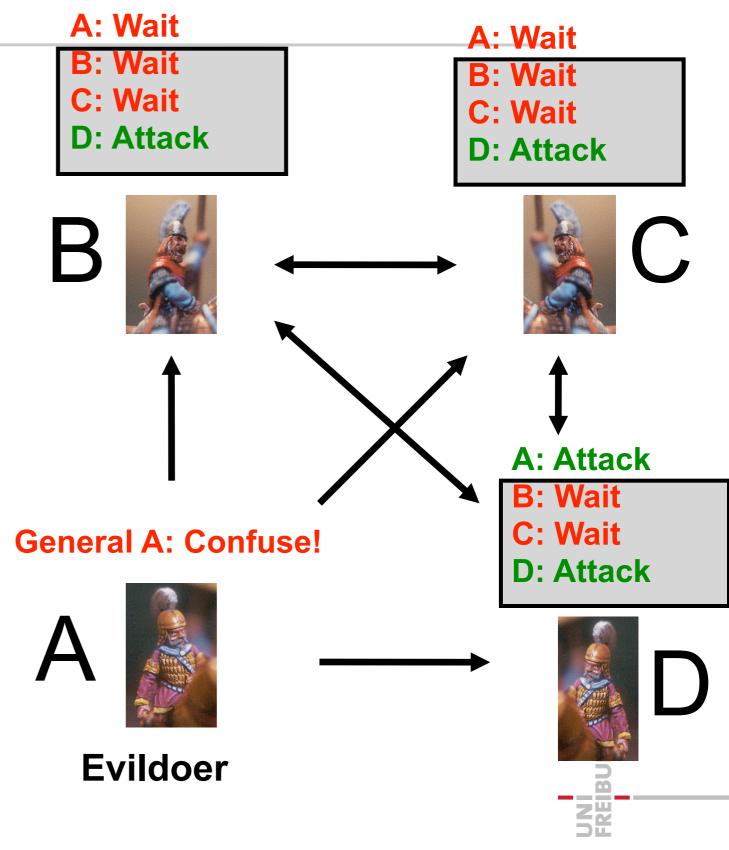
Theorem

- The problem of three byzantine generals cannot be solved (without cryptography)
- It can be solved for 4 generals
- Consider: 1 general, 3 officers problem
 - If the general is loyal then all loyal officers will obey the command
 - In any case distribute the received commands to all fellow officers
 - What if the general is the renegade?



Byzantine Agreement

- The problem of four byzantine generals can be solved (without cryptography)
- Algorithm
 - General A sends his command to all other generals
 - A sticks to his command if he is honest
 - All other generals forward the received commands to all other generals
 - Every generals computes the majority decision of the received commands and follows this command


Byzantine Agreement

Theorem

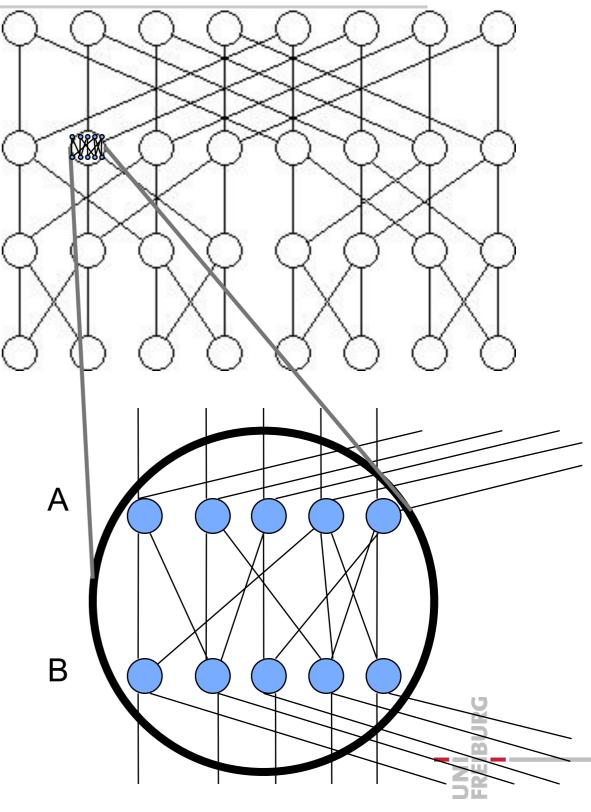
 The problem of four byzantine generals can be solved (without cryptography)

Algorithm

- General A sends his command to all other generals
 - A sticks to his command if he is honest
- All other generals forward the received command to all other generals
- Every generals computes the majority decision of the received commands and follows this command

- Theorem
 - If m generals are traitors then 2m+1 generals must be honest to get a Byzantine Agreement
- This bound is sharp if one does not rely on cryptography
- Theorem
 - If a digital signature scheme is working, then an arbitrarily large number of betraying generals can be dealt with
- Solution
 - Every general signs his command
 - All commands are shared together with the signature
 - Inconsistent commands can be detected
 - The evildoer can be exposed

P2P and Byzantine Agreement


- Digital signature can solve the problem of malign peers
- Problem: Number of messages
 - $O(n^2)$ messages in the whole network (for n peers)
- In "Scalable Byzantine Agreement" von Clifford Scott Lewis und Jared Saia, 2003
 - a scalable algorithm was presented
 - can deal with n/6 evil peers
 - if they do not influence the network structure
 - use only O(log n) messages per node in the expectation
 - find agreement with high probability

UNI FREIBURG

Network of Lewis and Saia

- Butterfly network with clusters of size c log n
 - clusters are bipartite expander graphs
 - Bipartite graph
 - is a graph with disjoint node sets A and B where no edges connect the nodes within A or within B
 - Expander graph
 - A bipartite graph is an expander graph if for each subset X of A the number of neighbors in B is at least c|X| for a fixed constant c>0
 - and vice versa for the subsets in B

- Advantage
 - Very efficient, robust and simple method
- Disadvantage
 - Strong assumptions
 - The attacker does not know the internal network structure
- If the attacker knows the structure
 - Eclipse attack!

IBURG

Cuckoo Hashing for Security

- Awerbuch, Scheideler, Towards Scalable and Robust Overlay Networks
- Problem:
 - Rejoin attacks
- Solution:
 - Chord network combined with
 - Cuckoo Hashing
 - Majority condition:
 - honest peers in the neighborhood are in the majority
 - Data is stored with O(log n) copies

CoNe Freiburg

Cuckoo Hashing

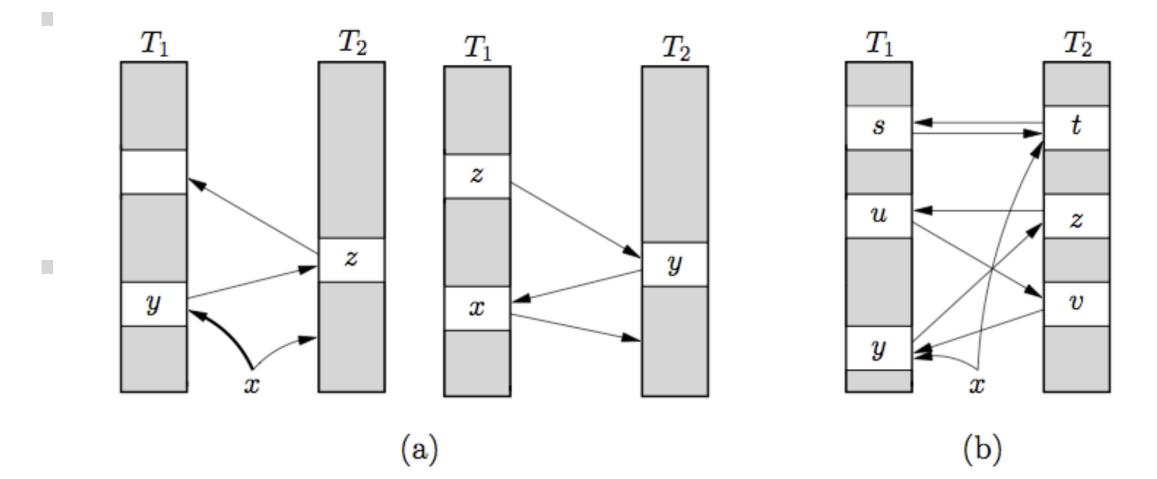


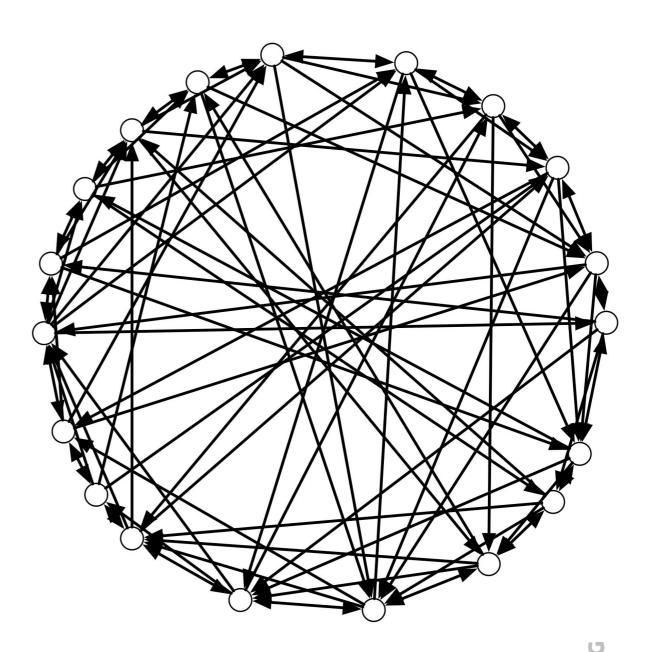
Fig. 1. Examples of CUCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Key x is successfully inserted by moving keys y and z from one table to the other. (b) Key x cannot be accommodated and a rehash is necessary.

> From Cuckoo Hashing Rasmus Pagh, Flemming Friche Rodler 2004

45

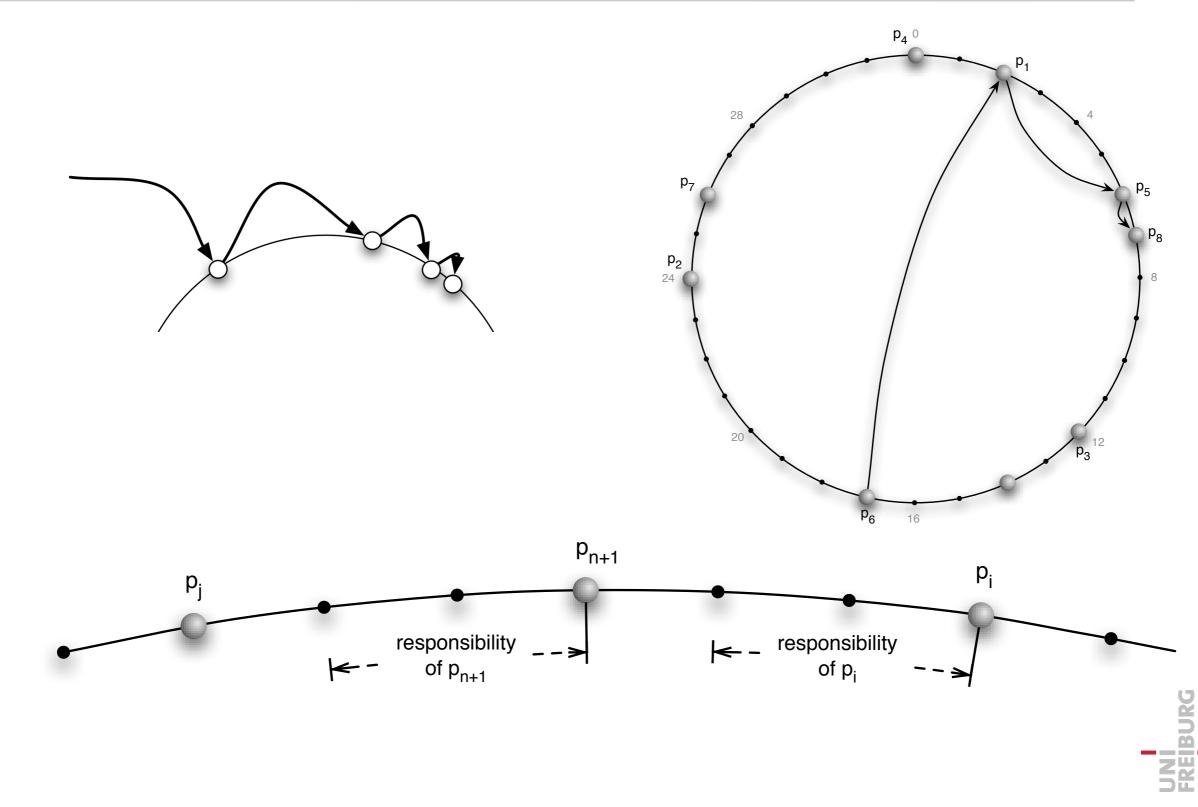
A Efficiency of Cuckoo Hashing Freiburg

- Theorem
 - Let ε>0 then if at most n elements are stored, then Cuckoo Hashing needs a hash space of 2n+ε.
- Three hash functions increase the load factor from 1/2 to 91%


Insert

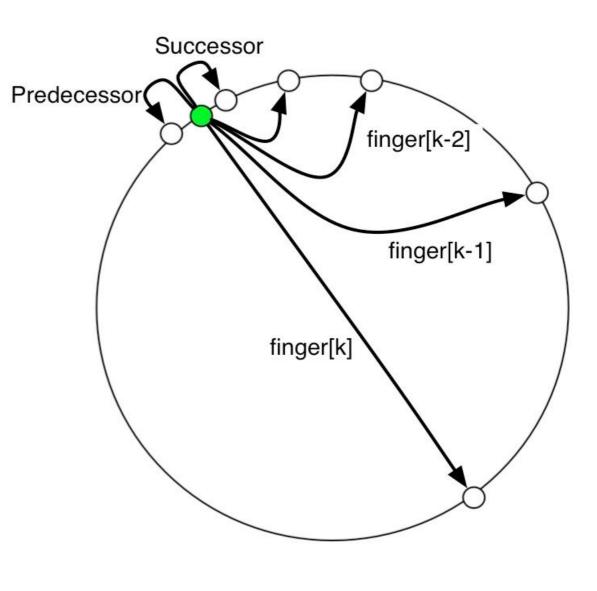
- needs O(1) steps in the expectation
- O(log n) with high probability
- Lookup
 - needs two steps

REIBURG



- Ion Stoica, Robert Morris, David Karger, M. Frans
 Kaashoek and Hari
 Balakrishnan (2001)
- Distributed Hash Table
 - range {0,...,2^m-1}
 - for sufficient large m
- for this work the range is seen as [0,1)
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance

47


Lookup in Chord CoNe Freiburg

Data Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all $i \in \{0,..,m\text{-}1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)s
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers

49

Cuckoo Hashing for Security

Given n honest peers and c n dishonest peers

Goal

- For any adversarial attack the following properties for every interval $I \subseteq [0, 1)$ of size at least (c log n)/n we have
- Balancing condition
 - I contains Θ(|I| · n) nodes
- Majority condition
 - the honest nodes in I are in the majority
- Then all majority decisions of O(log n) nodes give a correct result

UNI FREIBURG

Rejoin Attacks

- Secure hash functions for positions in the Chord
 - if one position is used
 - then in an O(log n) neighborhood more than half is honest
 - if more than half of al peers are honest
- Rejoin attacks
 - use a small number of attackers
 - check out new addresses until attackers fall in one interval
 - then this neighborhood can be ruled by the attackers

The Cuckoo Rule for Chord

- Notation
 - a region is an interval of size 1/2^r in [0, 1) for some integer r that starts at an integer multiple of 1/2^r
 - There are exactly 2^r regions
 - A k-region is a region of size (closest from above to) k/n, and for any point x ∈
 [0, 1)
 - the k-region $R_k(x)$ is the unique k-region containing x.
- Cuckoo rule
 - If a new node v wants to join the system, pick a random $x \in [0, 1)$.
 - Place v into x and move all nodes in $\mathsf{R}_k(x)\,$ to points in [0, 1) chosen uniformly at random
 - (without replacing any further nodes).
- Theorem
 - For any constants ε and k with ε < 1-1/k, the cuckoo rule with parameter k satisfies the balancing and majority conditions for a polynomial number of rounds, with high probability, for any adversarial strategy within our model.
 - The inequality $\epsilon < 1 1/k$ is sharp

- Data storage
 - each data item is stored in the O(log³ n) neighborhood as copies
- Primitives
 - robust hash functions
 - safe against attacks
 - majority decisions of each operation
 - use multiple routes for targeting location

- Lookup
 - works correctly with high probability
 - can be performed with O(log⁵n) messages
- Inserting of data
 - works in polylogarithmic time
 - needs O(log⁵ n) messages
- Copies stored of each data: O(log³n)

- Advantage
 - Cuckoo Chord is safe against adversarial attacks
 - Cuckoo rule is simple and effective
- Disadvantage
 - Computation of secure hash function is complex
 - Considerate overhead for communication
- Theoretical breakthrough
- Little impact to the practical world

Peer-to-Peer Networks 14 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

UNI FREIBURG