

Peer-to-Peer Networks 15 Self-Organization

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

FREI

 T-Man: Fast Gossip-based Construction of Large-Scale Overlay Topologies Mark Jelasity Ozalp Babaoglu, 1994

2

do at a random time once in each consecutive interval of T time units $p \leftarrow \text{selectPeer}()$ myDescriptor $\leftarrow (\text{myAddress,myProfile})$ buffer $\leftarrow \text{merge}(\text{view}, \{\text{myDescriptor}\})$ buffer $\leftarrow \text{merge}(\text{buffer}, \text{rnd.view})$ send buffer to preceive buffer p from pbuffer $\leftarrow \text{merge}(\text{buffer}_p, \text{view})$ view $\leftarrow \text{selectView}(\text{buffer})$ (a) active thread

do forever receive $buffer_q$ from qmyDescriptor \leftarrow (myAddress,myprofile) $buffer \leftarrow$ merge(view,{myDescriptor}) $buffer \leftarrow$ merge(buffer,rnd.view) send buffer to q $buffer \leftarrow$ merge(buffer_q,view) view \leftarrow selectView(buffer)

(b) passive thread

Fig. 1. The T-MAN protocol.

3

Fig. 2. Illustrative example of constructing a torus over $50 \times 50 = 2500$ nodes, starting from a uniform random topology with c = 20. For clarity, only the nearest 4 neighbors (out of 20) of each node are displayed.

- <u>Chord on demand</u>, A Montresor, M Jelasity, O Babaoglu - Peer-to-Peer Computing, 2005
- Apply self-organization to Chord
 - compare insertion operation Pastry
- T-Chord
 - Apply T-Man
 - preferring Chord edges
- T-Chord-Prox
 - rank according to RTT

A Ranking Function T-Chord

- 1st rank
 - nearest successor/predecessor on the ring $[0, 2^m 1]$
- For each exponent $j \in [1, m-1]$
 - select from view the nodes nearest to
 [ID + 2^j mod 2^m, ID + 2^{j+1} 1 mod 2^m]

DHASH++

BURG

A Ranking Function T-Chord-Prox Freiburg

1st rank

- nearest sucessor/predecessor on the ring $[0, 2^m 1]$
- For each exponent $j \in [1, m-1]$
 - select from view the nodes nearest to $[ID + 2^j \mod 2^m, ID + 2^{j+1} 1 \mod 2^m]$
 - measure latency (RTT) for <u>p</u> random nodes from view in such intervals and choose the closest

T-Man for T-Chord

- selectPeer():
 - randomly select a peer *q* from the *r* nodes in my view that are nearest to *p* in terms of ID distance
- extract():
 - send to q the r nodes in local view that are nearest to q
 - **q** responds with the **r** nodes in its view that are *nearest to* **p**
- merge():

9

T-Man for T-Chord

- selectPeer():
 - randomly select a peer *q* from the *r* nodes in my view that are nearest to *p* in terms of ID distance
- extract():
 - send to q the r nodes in local view that are nearest to q
 - q responds with the r nodes in its view that are nearest to p
- merge():

- Starting with a neighbors on the ring
- Loss rate and hop count
 - experiments on a real-word dataset from 2002

- Starting with a neighbors on the ring
- Loss rate and hop count

Message Delay

Peer-to-Peer Networks 15 Self-Organization

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

FREI