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Pastry

 Peter Druschel 

- Rice University, Houston, Texas 

- now head of Max-Planck-Institute for Computer Science, 

Saarbrücken/Kaiserslautern

 Antony Rowstron

- Microsoft Research, Cambridge, GB

 Developed in Cambridge (Microsoft Research)

 Pastry

- Scalable, decentralized object location and routing for large scale peer-to-

peer-network 

 PAST

- A large-scale, persistent peer-to-peer storage utility

 Two names one P2P network

- PAST is an application for Pastry enabling the full P2P data storage 

functionality

- We concentrate on Pastry
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Pastry Overview

 Each peer has a 128-bit ID: nodeID

- unique and uniformly distributed

- e.g. use cryptographic function applied to IP-address

 Routing

- Keys are matched to {0,1}128

- According to a metric messages are distributed to the neighbor next to the target

 Routing table has 

O(2b(log n)/b) + l entries

- n: number of peers

- l: configuration parameter

- b: word length

• typical: b= 4 (base 16), 

l = 16

• message delivery is guaranteed as long as less than l/2 neighbored peers fail

 Inserting a peer and finding a key needs O((log n)/b) messages
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Routing Table

 NodeId presented in base 2b

- e.g. NodeID: 65A0BA13

 For each prefix p and letter x ∈ {0,..,2b-

1}  add an peer of form px* to the routing 

table of NodeID, e.g.

- b=4, 2b=16

- 15 entries for 0*,1*, .. F*

- 15 entries for 60*, 61*,... 6F*

- ...

- if no peer of the form exists, then the 

entry remains empty

 Choose next neighbor according to a 

distance metric

- metric results from the RTT (round 

trip time)

 In addition choose l neighbors

-l/2 with next higher ID

-l/2 with next lower ID
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Routing Table

 Example b=2

 Routing Table

- For each prefix p and letter x ∈
{0,..,2b-1}  add an peer of form 

px* to the routing table of 

NodeID

 In addition choose l

neighors 
- l/2 with next higher ID

- l/2 with next lower ID

 Observation

- The leaf-set alone can be used 

to find a target

 Theorem

- With high probability there are at 

most O(2b (log n)/b) entries in 

each routing table
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Routing Table

 Theorem

- With high probability there are at most 

O(2b (log n)/b) entries in each routing 

table

 Proof

- The probability that a peer gets the 

same m-digit prefix is

- The probability that a m-digit prefix is 

unused is

- For m=c (log n)/b we get

- With (extremely) high probability there is 

no peer with the same prefix of length 

(1+ε)(log n)/b

- Hence we have (1+ε)(log n)/b rows with 

2b-1 entries each
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A Peer Enters

 New node x sends message to the node 

z with the longest common prefix p

 x receives

- routing table of z

- leaf set of z

 z updates leaf-set

 x informs  informiert l-leaf set

 x informs peers in routing table

- with same prefix p (if l/2 < 2b)

 Numbor of messages for adding a peer

-l messages to the leaf-set

- expected (2b - l/2) messages to nodes 

with common prefix 

- one message to z with answer
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When the Entry-Operation Errs

 Inheriting the next neighbor 

routing table does not allows 

work perfectly

 Example

- If no peer with 1* exists 

then all other peers have 

to point to the new node

- Inserting 11

- 03 knows from its routing 

table

• 22,33

• 00,01,02

- 02 knows from the leaf-set

• 01,02,20,21

 11 cannot add all necessary 

links to the routing tables
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entries in leaf set

necessary entries in leaf set

missing entries



missing link

request to known neighbors

links of neighbors

Missing Entries in the Routing Table

 Assume the entry Ri
j is 

missing at peer D

- j-th row and i-th column of the 

routing table

 This is noticed if message of 

a peer with such a prefix is 

received

 This may also happen if a 

peer leaves the network

 Contact peers in the same 

row

- if they know a peer this address is 

copied

 If this fails then perform 

routing to the missing link
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Lookup

 Compute the target ID 

using the hash function

 If the address is within the 

l-leaf set

- the message is sent 

directly

- or it discovers that the 

target is missing

 Else use the address in 

the routing table to 

forward the mesage

 If this fails take best fit 

from all addresses
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Lookup in Detail

 L: l-leafset

 R: routing table

 M: nodes in the vicinity of D

(according to RTT)

 D: key

 A: nodeID of current peer

 Ri
l: j-th row and i-th column of 

the routing table

 Li: numbering of the leaf set

 Di: i-th digit of key D

 shl(A): length of the larges 

common

prefix of A and D 

(shared header length)
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Routing — Discussion

 If the Routing-Table is correct 

- routing needs O((log n)/b) messages

 As long as the leaf-set is correct

- routing needs O(n/l) messages

- unrealistic worst case since even damaged routing tables allow 

dramatic speedup

 Routing does not use the real distances

- M is used only if errors in the routing table occur

- using locality improvements are possible

 Thus, Pastry uses heuristics for improving the lookup 

time

- these are applied to the last, most expensive, hops
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Localization of the k Nearest Peers

 Leaf-set peers are not near, e.g.

- New Zealand, California, India, ...

 TCP protocol measures latency 

- latencies (RTT) can define a metric

- this forms the foundation for finding the nearest peers

 All methods of Pastry are based on heuristics

- i.e. no rigorous (mathematical) proof of efficiency

 Assumption: metric is Euclidean

14



Locality in the Routing Table

 Assumption

- When a peer is inserted the 

peers contacts a near peer

- All peers have optimized routing 

tables

 But:

- The first contact is not 

necessary near according to the 

node-ID

 1st step

- Copy entries of the first row of 

the routing table of P

• good approximation 

because of the triangle 

inequality (metric)

 2nd step

- Contact fitting peer p‘ of p with 

the same first letter

- Again the entries are relatively 

close

 Repeat these steps until all entries 

are updated
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Locality in the Routing Table

 In the best case

- each entry in the routing table is 

optimal w.r.t. distance metric

- this does not lead to the 

shortest path

 There is hope for short 

lookup times

- with the length of the common 

prefix the latency metric grows 

exponentially

- the last hops are the most 

expensive ones

- here the leaf-set entries help
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Localization of Near Nodes

 Node-ID metric and latency metric are not compatible

 If data is replicated on k peers then peers with similar 

Node-ID might be missed

 Here, a heuristic is used

 Experiments validate this approach
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Experimental Results — Scalability

 Parameter b=4, 

l=16, M=32

 In this experiment 

the hop distance 

grows 

logarithmically with 

the number of 

nodes

 The analysis 

predicts  O(log n)

 Fits well
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Experimental Results

Distribution of Hops
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 Parameter b=4, l=16, M=32, n = 100,000

 Result

- deviation from the expected hop distance is extremely small

 Analysis predicts difference with extremely small 

probability

- fits well



Experimental Results — Latency

 Parameter b=4, l=16, M=3

 Compared to the shortest path astonishingly small

- seems to be constant
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Interpreting the Experiments

 Experiments were performed in a well-behaving simulation 

environment

 With b=4, L=16 the number of links is quite large

- The factor 2b/b = 4 influences the experiment 

- Example n= 100 000

• 2b/b log n = 4 log n > 60 links in routing table

• In addition we have 16 links in the leaf-set and 32 in M

 Compared to other protocols like Chord the degree is rather 

large

 Assumption of Euclidean metric is rather arbitrary
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