Peer-to-Peer Networks
05 Pastry

Christian Ortolf
Technical Faculty
Computer-Networks and Telematics
University of Freiburg
Pastry

- Peter Druschel
 - Rice University, Houston, Texas
 - now head of Max-Planck-Institute for Computer Science, Saarbrücken/Kaiserslautern
- Antony Rowstron
 - Microsoft Research, Cambridge, GB
- Developed in Cambridge (Microsoft Research)
- Pastry
 - Scalable, decentralized object location and routing for large scale peer-to-peer-network
- PAST
 - A large-scale, persistent peer-to-peer storage utility
- Two names one P2P network
 - PAST is an application for Pastry enabling the full P2P data storage functionality
 - We concentrate on Pastry
Pastry Overview

- Each peer has a 128-bit ID: nodeID
 - unique and uniformly distributed
 - e.g. use cryptographic function applied to IP-address
- Routing
 - Keys are matched to \(\{0,1\}^{128} \)
 - According to a metric messages are distributed to the neighbor next to the target
- Routing table has
 \[O(2^b(\log n)/b) + \ell \] entries
 - \(n \): number of peers
 - \(\ell \): configuration parameter
 - \(b \): word length
 - typical: \(b = 4 \) (base 16), \(\ell = 16 \)
 - message delivery is guaranteed as long as less than \(\ell/2 \) neighbored peers fail
- Inserting a peer and finding a key needs \(O((\log n)/b) \) messages
Routing Table

- NodeId presented in base 2^b
 - e.g. NodeID: 65A0BA13
- For each prefix p and letter $x \in \{0, \ldots, 2^b-1\}$ add an peer of form px^* to the routing table of NodeID, e.g.
 - $b=4$, $2^b=16$
 - 15 entries for $0^*, 1^*, \ldots F^*$
 - 15 entries for $60^*, 61^*, \ldots 6F^*$
 - ... if no peer of the form exists, then the entry remains empty
- Choose next neighbor according to a distance metric
 - metric results from the RTT (round trip time)
- In addition choose ℓ neighbors
 - $\ell/2$ with next higher ID
 - $\ell/2$ with next lower ID
Example b=2

Routing Table
- For each prefix p and letter \(x \in \{0, \ldots, 2^b - 1\} \) add an peer of form \(px^* \) to the routing table of NodeID

In addition choose \(\ell \) neighbors
- \(\ell/2 \) with next higher ID
- \(\ell/2 \) with next lower ID

Observation
- The leaf-set alone can be used to find a target

Theorem
- With high probability there are at most \(O(2^b (\log n)/b) \) entries in each routing table
Routing Table

- **Theorem**
 - With high probability there are at most $O(2^b \frac{(\log n)}{b})$ entries in each routing table.

- **Proof**
 - The probability that a peer gets the same m-digit prefix is 2^{-bm}.

 - The probability that a m-digit prefix is unused is

 $$(1 - 2^{-bm})^n \leq e^{-n/2^{bm}}$$

 - For $m = c \frac{(\log n)}{b}$ we get

 $$e^{-n/2^{bm}} \leq e^{-n/2^c \log n} \leq e^{-n/n^c} \leq e^{-n^{c-1}}$$

 - With (extremely) high probability there is no peer with the same prefix of length $(1+\varepsilon)(\log n)/b$.

 - Hence we have $(1+\varepsilon)(\log n)/b$ rows with 2^b-1 entries each.
A Peer Enters

- New node x sends message to the node z with the longest common prefix p
- x receives
 - routing table of z
 - leaf set of z
- z updates leaf-set
- x informs informed ℓ-leaf set
- x informs peers in routing table
 - with same prefix p (if ℓ/2 < 2^b)
- Number of messages for adding a peer
 - ℓ messages to the leaf-set
 - expected (2^b - ℓ/2) messages to nodes with common prefix
 - one message to z with answer
When the Entry-Operation Errs

- Inheriting the next neighbor routing table does not allow work perfectly

- Example
 - If no peer with 1* exists then all other peers have to point to the new node
 - Inserting 11
 - 03 knows from its routing table
 - 22,33
 - 00,01,02
 - 02 knows from the leaf-set
 - 01,02,20,21
- 11 cannot add all necessary links to the routing tables
Missing Entries in the Routing Table

- Assume the entry R_{ij} is missing at peer D
 - j-th row and i-th column of the routing table
- This is noticed if a message of a peer with such a prefix is received
- This may also happen if a peer leaves the network
- Contact peers in the same row
 - if they know a peer this address is copied
- If this fails then perform routing to the missing link

![Diagram showing routing process with missing link and request to known neighbors]
- Compute the target ID using the hash function
- If the address is within the ℓ-leaf set
 - the message is sent directly
 - or it discovers that the target is missing
- Else use the address in the routing table to forward the message
- If this fails take best fit from all addresses
Lookup in Detail

- L: ℓ-leafset
- R: routing table
- M: nodes in the vicinity of D (according to RTT)
- D: key
- A: nodeID of current peer
- R_{ij}: j-th row and i-th column of the routing table
- L_i: numbering of the leaf set
- D_i: i-th digit of key D
- shl(A): length of the largest common prefix of A and D (shared header length)

1. if $(L_{\lfloor \ell/2 \rfloor} \leq D \leq L_{\lfloor \ell/2 \rfloor})$
2. // D is within range of our leaf set
3. forward to L_i, s.th. $|D - L_i|$ is minimal;
4. }
5. // use the routing table
6. Let $l = \text{shl}(D, A)$;
7. if ($R_{D_i}^{D_i} \neq \text{null}$)
8. forward to $R_{D_i}^{D_i}$;
9. }
10. else {
11. // rare case
12. forward to $T \in L \cup R \cup M$, s.th.
13. $\text{shl}(T, D) \geq l$,
14. $|T - D| < |A - D|$
15. }
16. }
Routing — Discussion

- If the Routing-Table is correct
 - routing needs $O((\log n)/b)$ messages

- As long as the leaf-set is correct
 - routing needs $O(n/l)$ messages
 - unrealistic worst case since even damaged routing tables allow dramatic speedup

- Routing does not use the real distances
 - M is used only if errors in the routing table occur
 - using locality improvements are possible

- Thus, Pastry uses heuristics for improving the lookup time
 - these are applied to the last, most expensive, hops
Localization of the k Nearest Peers

- Leaf-set peers are not near, e.g.
 - New Zealand, California, India, ...

- TCP protocol measures latency
 - Latencies (RTT) can define a metric
 - This forms the foundation for finding the nearest peers

- All methods of Pastry are based on heuristics
 - I.e. no rigorous (mathematical) proof of efficiency

- Assumption: metric is Euclidean
Locality in the Routing Table

- Assumption
 - When a peer is inserted the peers contacts a near peer
 - All peers have optimized routing tables
- But:
 - The first contact is not necessary near according to the node-ID
- 1st step
 - Copy entries of the first row of the routing table of P
 - good approximation because of the triangle inequality (metric)
- 2nd step
 - Contact fitting peer p’ of p with the same first letter
 - Again the entries are relatively close
- Repeat these steps until all entries are updated
Locality in the Routing Table

- In the best case
 - each entry in the routing table is optimal w.r.t. distance metric
 - this does not lead to the shortest path
- There is hope for short lookup times
 - with the length of the common prefix the latency metric grows exponentially
 - the last hops are the most expensive ones
 - here the leaf-set entries help
Localization of Near Nodes

- Node-ID metric and latency metric are not compatible
- If data is replicated on k peers then peers with similar Node-ID might be missed
- Here, a heuristic is used
- Experiments validate this approach
Experimental Results — Scalability

- Parameter $b=4$, $l=16$, $M=32$
- In this experiment the hop distance grows logarithmically with the number of nodes
- The analysis predicts $O(\log n)$
- Fits well
Experimental Results
Distribution of Hops

- Parameter $b=4$, $l=16$, $M=32$, $n = 100,000$

- Result
 - deviation from the expected hop distance is extremely small

- Analysis predicts difference with extremely small probability
 - fits well
Experimental Results — Latency

- Parameter $b=4$, $l=16$, $M=3$
- Compared to the shortest path astonishingly small
 - seems to be constant

![Graph showing latency over number of nodes]

--relative-distance
-Number-of-nodes

- Pastry
- Complete routing table
Interpreting the Experiments

- Experiments were performed in a well-behaving simulation environment

- With $b=4$, $L=16$ the number of links is quite large
 - The factor $2^b/b = 4$ influences the experiment
 - Example $n=100\,000$
 - $2^b/b \log n = 4 \log n > 60$ links in routing table
 - In addition we have 16 links in the leaf-set and 32 in M

- Compared to other protocols like Chord the degree is rather large

- Assumption of Euclidean metric is rather arbitrary
Peer-to-Peer Networks
05 Pastry

Christian Ortolf
Technical Faculty
Computer-Networks and Telematics
University of Freiburg