
Peer-to-Peer Networks
05 Pastry

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

Pastry

 Peter Druschel

- Rice University, Houston, Texas

- now head of Max-Planck-Institute for Computer Science,

Saarbrücken/Kaiserslautern

 Antony Rowstron

- Microsoft Research, Cambridge, GB

 Developed in Cambridge (Microsoft Research)

 Pastry

- Scalable, decentralized object location and routing for large scale peer-to-

peer-network

 PAST

- A large-scale, persistent peer-to-peer storage utility

 Two names one P2P network

- PAST is an application for Pastry enabling the full P2P data storage

functionality

- We concentrate on Pastry

2

Pastry Overview

 Each peer has a 128-bit ID: nodeID

- unique and uniformly distributed

- e.g. use cryptographic function applied to IP-address

 Routing

- Keys are matched to {0,1}128

- According to a metric messages are distributed to the neighbor next to the target

 Routing table has

O(2b(log n)/b) + l entries

- n: number of peers

- l: configuration parameter

- b: word length

• typical: b= 4 (base 16),

l = 16

• message delivery is guaranteed as long as less than l/2 neighbored peers fail

 Inserting a peer and finding a key needs O((log n)/b) messages

4

Routing Table

 NodeId presented in base 2b

- e.g. NodeID: 65A0BA13

 For each prefix p and letter x ∈ {0,..,2b-

1} add an peer of form px* to the routing

table of NodeID, e.g.

- b=4, 2b=16

- 15 entries for 0*,1*, .. F*

- 15 entries for 60*, 61*,... 6F*

- ...

- if no peer of the form exists, then the

entry remains empty

 Choose next neighbor according to a

distance metric

- metric results from the RTT (round

trip time)

 In addition choose l neighbors

-l/2 with next higher ID

-l/2 with next lower ID

5

Routing Table

 Example b=2

 Routing Table

- For each prefix p and letter x ∈
{0,..,2b-1} add an peer of form

px* to the routing table of

NodeID

 In addition choose l

neighors
- l/2 with next higher ID

- l/2 with next lower ID

 Observation

- The leaf-set alone can be used

to find a target

 Theorem

- With high probability there are at

most O(2b (log n)/b) entries in

each routing table

6

Routing Table

 Theorem

- With high probability there are at most

O(2b (log n)/b) entries in each routing

table

 Proof

- The probability that a peer gets the

same m-digit prefix is

- The probability that a m-digit prefix is

unused is

- For m=c (log n)/b we get

- With (extremely) high probability there is

no peer with the same prefix of length

(1+ε)(log n)/b

- Hence we have (1+ε)(log n)/b rows with

2b-1 entries each

7

A Peer Enters

 New node x sends message to the node

z with the longest common prefix p

 x receives

- routing table of z

- leaf set of z

 z updates leaf-set

 x informs informiert l-leaf set

 x informs peers in routing table

- with same prefix p (if l/2 < 2b)

 Numbor of messages for adding a peer

-l messages to the leaf-set

- expected (2b - l/2) messages to nodes

with common prefix

- one message to z with answer

8

When the Entry-Operation Errs

 Inheriting the next neighbor

routing table does not allows

work perfectly

 Example

- If no peer with 1* exists

then all other peers have

to point to the new node

- Inserting 11

- 03 knows from its routing

table

• 22,33

• 00,01,02

- 02 knows from the leaf-set

• 01,02,20,21

 11 cannot add all necessary

links to the routing tables

9

new peer

entries in leaf set

necessary entries in leaf set

missing entries

missing link

request to known neighbors

links of neighbors

Missing Entries in the Routing Table

 Assume the entry Ri
j is

missing at peer D

- j-th row and i-th column of the

routing table

 This is noticed if message of

a peer with such a prefix is

received

 This may also happen if a

peer leaves the network

 Contact peers in the same

row

- if they know a peer this address is

copied

 If this fails then perform

routing to the missing link

10

Lookup

 Compute the target ID

using the hash function

 If the address is within the

l-leaf set

- the message is sent

directly

- or it discovers that the

target is missing

 Else use the address in

the routing table to

forward the mesage

 If this fails take best fit

from all addresses

11

Lookup in Detail

 L: l-leafset

 R: routing table

 M: nodes in the vicinity of D

(according to RTT)

 D: key

 A: nodeID of current peer

 Ri
l: j-th row and i-th column of

the routing table

 Li: numbering of the leaf set

 Di: i-th digit of key D

 shl(A): length of the larges

common

prefix of A and D

(shared header length)

12

Routing — Discussion

 If the Routing-Table is correct

- routing needs O((log n)/b) messages

 As long as the leaf-set is correct

- routing needs O(n/l) messages

- unrealistic worst case since even damaged routing tables allow

dramatic speedup

 Routing does not use the real distances

- M is used only if errors in the routing table occur

- using locality improvements are possible

 Thus, Pastry uses heuristics for improving the lookup

time

- these are applied to the last, most expensive, hops

13

Localization of the k Nearest Peers

 Leaf-set peers are not near, e.g.

- New Zealand, California, India, ...

 TCP protocol measures latency

- latencies (RTT) can define a metric

- this forms the foundation for finding the nearest peers

 All methods of Pastry are based on heuristics

- i.e. no rigorous (mathematical) proof of efficiency

 Assumption: metric is Euclidean

14

Locality in the Routing Table

 Assumption

- When a peer is inserted the

peers contacts a near peer

- All peers have optimized routing

tables

 But:

- The first contact is not

necessary near according to the

node-ID

 1st step

- Copy entries of the first row of

the routing table of P

• good approximation

because of the triangle

inequality (metric)

 2nd step

- Contact fitting peer p‘ of p with

the same first letter

- Again the entries are relatively

close

 Repeat these steps until all entries

are updated

15

Locality in the Routing Table

 In the best case

- each entry in the routing table is

optimal w.r.t. distance metric

- this does not lead to the

shortest path

 There is hope for short

lookup times

- with the length of the common

prefix the latency metric grows

exponentially

- the last hops are the most

expensive ones

- here the leaf-set entries help

16

Localization of Near Nodes

 Node-ID metric and latency metric are not compatible

 If data is replicated on k peers then peers with similar

Node-ID might be missed

 Here, a heuristic is used

 Experiments validate this approach

17

Experimental Results — Scalability

 Parameter b=4,

l=16, M=32

 In this experiment

the hop distance

grows

logarithmically with

the number of

nodes

 The analysis

predicts O(log n)

 Fits well

18

Experimental Results

Distribution of Hops

19

 Parameter b=4, l=16, M=32, n = 100,000

 Result

- deviation from the expected hop distance is extremely small

 Analysis predicts difference with extremely small

probability

- fits well

Experimental Results — Latency

 Parameter b=4, l=16, M=3

 Compared to the shortest path astonishingly small

- seems to be constant

20

Interpreting the Experiments

 Experiments were performed in a well-behaving simulation

environment

 With b=4, L=16 the number of links is quite large

- The factor 2b/b = 4 influences the experiment

- Example n= 100 000

• 2b/b log n = 4 log n > 60 links in routing table

• In addition we have 16 links in the leaf-set and 32 in M

 Compared to other protocols like Chord the degree is rather

large

 Assumption of Euclidean metric is rather arbitrary

21

Peer-to-Peer Networks
05 Pastry

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

