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Diameter and Degree in Graphs

 CHORD:

- degree O(log n)

- diameter O(log n)

 Is it possible to reach a smaller diameter with degree g=O(log n)?

- In the neighborhood of a node are at most g nodes

- In the 2-neighborhood of node are at most g2 nodes

- ...

- In the d-neighborhood of node are at most gd nodes

 So,

 Therefore

 So, Chord is quite close to the optimum diameter.
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Are there P2P-Netzwerke with constant out-

degree and diameter log n?

 CAN

- degree: 4

- diameter: n1/2

 Can we reach diameter O(log n) with constant 

degree?
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Continuous Graphs

 are infinite graphs with 
continuous node sets 
and edge sets

 The underlying graph

- x ∈ [0,1)

- Edges:

• (x,x/2), left edges

• (x,1+x/2), right edges

- plus revers edges.

• (x/2,x)

• (1+x/2,x)
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The Transition from Continuous to Discrete 

Graphs

 Consider discrete intervals resulting 

from a partition of the continuous 

space 

 Insert edge between interval A and 

B  

- if there exists x ∈ A and y ∈ B such that 

edge (x,y) exists in the continuous graph

 Intervals result from successive 

partitioning (halving) of existing 

intervals

 Therefore the degree is constant if

- the ratio between the size of the largest 

and smallest interval is constant

 This can be guarranteed by the 

principle of multiple choice

- which we present later on
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Principle of Multiple Choice

‣ Before inserted check c log n positions

‣ For position p(j) check the distance a(j) between potential left 

and right neighbor

‣ Insert element at position p(j) in the middle between left and 

right neighbor, where a(j) was the maximum choice

‣ Lemma

• After inserting n elements with high probability only intervals of 

size 1/(2n), 1/n  und 2/n occur.
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Proof of Lemma

1st Part: With high probability there is no interval of size 

larger than 2/n

follows from this Lemma

Lemma*

Let c/n be the largest interval. After inserting 2n/c peers 

all intervals are smaller than c/(2n) with high probability

From applying this lemma for c=n/2,n/4, ...,4 the first 

lemma follows.
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Proof

‣ 2nd part: No intervals smaller than 1/(2n) occur

• The overall length of intervals of size 1/(2n) before inserting is at 

most 1/2

• Such an area is hit with probability at most 1/2

• The probability to hit this area more than c log n times is at least

• Then for c>1 such an interval will not further be divided  with 

probability into an interval of size 1/(4m). 
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 Theorem Chernoff Bound

- Let x1,...,xn independent Bernoulli experiments with

• P[xi = 1] = p

• P[xi = 0] = 1-p

- Let

- Then for all c>0

- For 0≤c≤1

Chernoff-Bound
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Proof of Lemma*

 Consider the longest 

interval of size c/n. Then 

after inserting 2n/c peers all 

intervals are smaller than

c/(2n) with high probability.

 Consider an interval of 

length c/n

 With probability c/n such an 

interval will be hit

 Assume, each peer 

considers t log n intervals

 The expected number of 

hits is therefore

 From the Chernoff bound it 

follows

 If                   then this 

interval will be hit at least

times

 Choose

 Then, every interval is 

partitioned w.h.p.
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Lookup in Distance-Halving

 Map start/target 

to new-

start/target by 

using left edges

 Follow all left 

edges for 2+ log 

n steps

 Then, the new-

new...-new-start 

and the new-

new-...new-target 

are neighbored.
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Lookup in Distance-Halving
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 Follow all left 

edges for 2+ log n 

steps

- Use neighbor 

edge to go from 

new*-start to 

new*-target

 Then follow the 

reverse left edges 

from newm+1
-

target to newm-

target



Structure of Distance-Halving

 Peers are mapped to the intervals

- uses DHT for data

 Additional neighbored intervals are connected 

by pointers

 The largest interval has size 2/n w.h.p. 

- i.e. probability 1-n-c for some constant c

 The smallest interval size 1/(2n) w.h.p.

 Then the indegree and outdegree is constant

 Diameter is O(log n)

- which follows from the routing
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Lookup in Distance-Halving

15

 This works also using only right edges



Lookup in Distance-Halving

16

 This works also using a mixture of right and left  edges



Congestion Avoidance during Lookup

 Left and right-edges can be used in any ordering

- if one stores the combination for the reverse edges

 Analog to Valiant‘s routing result for the hyper-

cube one can show

 The congestion ist at most O(log n),

- i.e. every peer transports at most a factor of O(log n) 

more packets than any optimal network would need

 The same result holds for the Viceroy network
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Inserting peers in Distance-Halving

1.Perform multiple choice principle

 i.e. c log n queries for random intervals

 Choose largest interval

 halve this interval

2.Update ring edges

3.Update left and right edges

 by using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most 

O(log2 n) time and messages.
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Summary Distance-Halving

 Simple and efficient peer-to-peer network

- degree O(1)

- diameter O(log n)

- load balancing

- traffic balancing

- lookup complexity O(log n)

- insert O(log2n)

 We already have seen continuous graphs in other 
approaches

- Chord

- CAN

- Koorde

- ViceRoy
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Shuffle, Exchange, Shuffle-Exchange

 Consider binary string s of length m

- shuffle operation:

• shuffle(s1, s2, s3,..., sm) = 

(s2,s3,..., sm,s1)

- exchange:

• exchange(s1, s2, s3,..., sm) = 

(s1, s2, s3,..., ¬sm)

- shuffle exchange:

• SE(S) = exchange(shuffle(S))

= (s2,s3,..., sm, ¬ s1 )

 Observation:

Every string a can be transformed into a 

string b by at most m shuffle and shuffle 

exchange operations

Shuffle

Exchange

Shuffle-Exchange
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Magic Trick

 Observation

Every string a can be transformed into a 

string b by at most m shuffle and shuffle 

exchange operations Beispiel:

From 0    1    1    1    0    1    1 

to 1    0    0    1    1    1    1

via SE SE SE S   SE S   S

operations

SE

SE

S

S

S

SE

SE
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The De Bruijn Graph

 A De Bruijn graph consists of 
n=2m nodes,

- each representing an m digit 
binary strings

 Every node has two outgoing 
edges

- (u,shuffle(u))

- (u, SE(u))

 Lemma

- The De Bruijn graph has degree 2 
and diameter log n

 Koorde = Ring + DeBruijn-
Graph
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Koorde = Ring + DeBruijn-Graph

Consider ring with 2m nodes and De Bruijn edges
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Koorde = Ring + DeBruijn-Graph

 Note

- shuffle(s1, s2,..., sm) =

(s2,..., sm,s1)

• shuffle (x) = 

(x div 2m-1)+(2x) mod 2m

- SE(S) = (s2,s3,..., sm, ¬ s1 )

• SE(x) = 

1-(x div 2m-1)+(2x) mod 2m

- Hence: Then neighbors of x 

are

• 2x mod 2m and

• 2x+1 mod 2m
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Virtual DeBruijn Nodes

 To avoid collisions we 
choose 

- m > (2+c) log (n)

 Then the probability of two 
peers colliding is at most n-c

 But then we have much mor 
nodes in the graph than 
peers in the network

 Solution

- Every peer manages all  
DeBruijn nodes between his 
position and his successor on 
the ring

- only for incoming edges

- outgoing edges are considered 
only from the peer‘s poisition on 
the ring
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Properties of Koorde

 Theorem

- Every node has four pointers

- Every node has at most O(log n) incoming pointers 

w.h.p.

- The diameter is O(log n) w.h.p.

- Lookup  can be performed in time O(log n) w.h.p.

 But:

- Connectivity of the network is very low.

27



Properties of Koorde

 Theorem

- 1. Every node has four pointers

- 2. Every node has at most O(log n) 

incoming pointers w.h.p.

 Proof:

- 1. follows from the definition of the 

De Bruijn graph and the 

observation that only non-virtual 

nodes have outgoing edges

- 2. The distance between two 

peers is at most c (log n)/n 2m

with high probability

- The number of nodes pointing to 

this distance is therefore at most 

c (log n)  with high probability
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Properties of Koorde

 Theorem

- The diameter is O(log n) w.h.p.

- Lookup  can be performed in time O(log n) w.h.p.

 Proof sketch:

- The minimal distance of two peers is at least n-c 2m 

w.h.p.

- Therefore use only the c log n most significant bits in 

the routing

• since the prefix guarantees that one end in the 

responsibility area of a peer

- Follow the routing algorithm on the De Bruijn-graph until 

one ends in the responsibility area of a peer
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Degree k-DeBruijn-Graph

 Consider alphabet using 

k letters, e.g. k = 3

 Now, every k-De Bruijn-

node has successors

- (kx mod km)

- (kx +1 mod km)

- (kx+2 mod km)

- ... (kx+k-1 mod km) 

 Diameter is reduced to

- (log m)/(log k)

 Graph connectivity is 

increased to k
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k-Koorde

 Straight-forward 

generalization of 

Koorde

- by using k-De Bruijn 

graphs

 Improves lookup time 

and messages to

O((log n)/(log k)) steps
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