

Peer-to-Peer Networks 07 Degree Optimal Networks

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG

A Diameter and Degree in Graphs

- CHORD:
 - degree O(log n)
 - diameter O(log n)
- Is it possible to reach a smaller diameter with degree g=O(log n)?
 - In the neighborhood of a node are at most g nodes
 - In the 2-neighborhood of node are at most g² nodes
 - ...

- In the d-neighborhood of node are at most $g^{\rm d}$ nodes

So,
$$(\log n)^d = n$$

Therefore $d = \frac{\log n}{\log \log n}$

So, Chord is quite close to the optimum diameter.

2

Are there P2P-Netzwerke with constant outdegree and diameter log n?

- CAN
 - degree: 4
 - diameter: n^{1/2}
- Can we reach diameter O(log n) with constant degree?

BURG

Degree Optimal Networks

Distance Halving

Moni Naor, Udi Wieder 2003

INI

4

Continuous Graphs

- are infinite graphs with continuous node sets and edge sets
- The underlying graph
 - x ∈ [0,1)
 - Edges:
 - (x,x/2), *left* edges
 - (x,1+x/2), right edges
 - plus revers edges.
 - (x/2,x)
 - (1+x/2,x)

(x, 1/2 + x/2)

FREIBURG

The Transition from Continuous to Discrete Graphs

- Consider discrete intervals resulting from a partition of the continuous space
- Insert edge between interval A and B
 - if there exists $x \in A$ and $y \in B$ such that edge (x,y) exists in the continuous graph
- Intervals result from successive partitioning (halving) of existing intervals
- Therefore the degree is constant if
 - the ratio between the size of the largest and smallest interval is constant
- This can be guarranteed by the principle of multiple choice
 - which we present later on

Principle of Multiple Choice

- Before inserted check c log n positions
- For position p(j) check the distance a(j) between potential left and right neighbor
- Insert element at position p(j) in the middle between left and right neighbor, where a(j) was the maximum choice
- Lemma
 - After inserting n elements with high probability only intervals of size 1/(2n), 1/n und 2/n occur.

Proof of Lemma

1st Part: With high probability there is no interval of size larger than 2/n

follows from this Lemma

Lemma*

Let c/n be the largest interval. After inserting 2n/c peers all intervals are smaller than c/(2n) with high probability

From applying this lemma for c=n/2,n/4, ...,4 the first lemma follows.

- 2nd part: No intervals smaller than 1/(2n) occur
 - The overall length of intervals of size 1/(2n) before inserting is at most 1/2
 - Such an area is hit with probability at most 1/2
 - The probability to hit this area more than c log n times is at least

$$2^{-c\log n} = n^{-c}$$

 Then for c>1 such an interval will not further be divided with probability into an interval of size 1/(4m).

Chernoff-Bound

- Theorem Chernoff Bound
 - Let x1,...,xn independent Bernoulli experiments with

•
$$P[x_i = 1] = p$$

• $P[x_i = 0] = 1-p$
• Let $S_n = \sum_{i=1}^n x_i$

- Then for all c>0

$$\mathbf{P}[S_n \ge (1+c) \cdot \mathbf{E}[S_n]] \le e^{-\frac{1}{3}\min\{c,c^2\}pn}$$
- For 0≤c≤1

$$\mathbf{P}[S_n \le (1-c) \cdot \mathbf{E}[S_n]] \le e^{-\frac{1}{2}c^2pn}$$

UNI FREIBURG

Proof of Lemma*

- Consider the longest interval of size c/n. Then after inserting 2n/c peers all intervals are smaller than c/(2n) with high probability.
- Consider an interval of length c/n
- With probability c/n such an interval will be hit
- Assume, each peer considers t log n intervals
- The expected number of hits is therefore

$$E[X] = \frac{c}{n} \cdot \frac{2n}{c} \cdot t \log n = 2t \log n$$

From the Chernoff bound it follows

 $P[X \le (1-\delta)E[X]] \le n^{-\delta^2 t}$

• If $\delta^2 t \ge 2$ then this interval will be hit at least $2(1-\delta)t\log n$ times

• Choose $2(1-\delta) \ge 1$ $\delta \ge \frac{1}{2}$ $t \le \frac{1}{2}\delta^2$

 Then, every interval is partitioned w.h.p.

11

BURG

CoNe Freiburg

Lookup in Distance-Halving

- Map start/target to newstart/target by using left edges
- Follow all left edges for 2+ log n steps
- Then, the newnew...-new-start and the newnew-...new-target are neighbored.

UNI FREIBURG

CoNe Freiburg

Lookup in Distance-Halving

- Follow all left
 edges for 2+ log n
 steps
- Use neighbor edge to go from new*-start to new*-target
- Then follow the reverse left edges from new^{m+1}- target to new^m- target

UNI FREIBURG

Structure of Distance-Halving

- Peers are mapped to the intervals
 - uses DHT for data
- Additional neighbored intervals are connected by pointers
- The largest interval has size 2/n w.h.p.
 - i.e. probability 1-n^{-c} for some constant c
- The smallest interval size 1/(2n) w.h.p.
- Then the indegree and outdegree is constant
- Diameter is O(log n)
 - which follows from the routing

This works also using only right edges

This works also using a mixture of right and left edges

Congestion Avoidance during Lookup

- Left and right-edges can be used in any ordering
 - if one stores the combination for the reverse edges
- Analog to Valiant's routing result for the hypercube one can show
- The congestion ist at most O(log n),
 - i.e. every peer transports at most a factor of O(log n) more packets than any optimal network would need
- The same result holds for the Viceroy network

Inserting peers in Distance-Halving

1.Perform multiple choice principle

- i.e. c log n queries for random intervals
- Choose largest interval
- halve this interval
- 2.Update ring edges
- 3.Update left and right edges
 - by using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most O(log² n) time and messages.

A Summary Distance-Halving Freiburg

- Simple and efficient peer-to-peer network
 - degree O(1)
 - diameter O(log n)
 - load balancing
 - traffic balancing
 - lookup complexity O(log n)
 - insert O(log²n)
- We already have seen continuous graphs in other approaches
 - Chord
 - CAN
 - Koorde
 - ViceRoy

Degree Optimal Networks

Koorde M. Frans Kaashoek and David R. Karger 2003

UNI FREIBURG

Shuffle, Exchange, Shuffle-Exchange

- Consider binary string s of length m
 - shuffle operation:
 - shuffle($s_1, s_2, s_3,..., s_m$) = ($s_2, s_3,..., s_m, s_1$)
 - exchange:
 - exchange(s₁, s₂, s₃,..., s_m) = (s₁, s₂, s₃,..., ¬s_m)
 - shuffle exchange:
 - SE(S) = exchange(shuffle(S)) = $(s_2, s_3, ..., s_m, \neg s_1)$
- Observation:

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations

Exchange

Shuffle-Exchange

21

CoNe Freiburg

Magic Trick

Observation

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations Beispiel:

From	0	1	1	1	0	1	1	
to	1	0	0	1	1	1	1	
via	SE	SE	SE	S	SE	S	S	
		operations						

UNI FREIBURG

The De Bruijn Graph

- A De Bruijn graph consists of n=2m nodes,
 - each representing an m digit binary strings
- Every node has two outgoing edges
 - (u,shuffle(u))
 - (u, SE(u))
- Lemma
 - The De Bruijn graph has degree 2 and diameter log n
- Koorde = Ring + DeBruijn-Graph

➢Consider ring with 2^m nodes and De Bruijn edges

JNI REIBURG

CoNe Freiburg

Koorde = Ring + DeBruijn-Graph

Note

- shuffle($s_1, s_2,..., s_m$) = ($s_2,..., s_m, s_1$)
 - shuffle (x) = (x div 2^{m-1})+(2x) mod 2^m

-
$$SE(S) = (s_2, s_3, ..., s_m, \neg s_1)$$

- SE(x) = 1-(x div 2^{m-1})+(2x) mod 2^m
- Hence: Then neighbors of x are
 - 2x mod 2^m and
 - 2x+1 mod 2^m

Virtual DeBruijn Nodes

- To avoid collisions we choose
 - m > (2+c) log (n)
- Then the probability of two peers colliding is at most n^{-c}
- But then we have much mor nodes in the graph than peers in the network
- Solution
 - Every peer manages all DeBruijn nodes between his position and his successor on the ring
 - only for incoming edges
 - outgoing edges are considered only from the peer's poisition on the ring

Properties of Koorde

- Theorem
 - Every node has four pointers
 - Every node has at most O(log n) incoming pointers w.h.p.
 - The diameter is O(log n) w.h.p.
 - Lookup can be performed in time O(log n) w.h.p.
- But:
 - Connectivity of the network is very low.

INI

Properties of Koorde

Theorem

- 1. Every node has four pointers
- 2. Every node has at most O(log n) incoming pointers w.h.p.

Proof:

- 1. follows from the definition of the De Bruijn graph and the observation that only non-virtual nodes have outgoing edges
- 2. The distance between two peers is at most c (log n)/n 2^m with high probability
- The number of nodes pointing to this distance is therefore at most c (log n) with high probability

Properties of Koorde

Theorem

- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.

Proof sketch:

- The minimal distance of two peers is at least n^{-c} 2^m w.h.p.
- Therefore use only the c log n most significant bits in the routing
 - since the prefix guarantees that one end in the responsibility area of a peer
- Follow the routing algorithm on the De Bruijn-graph until one ends in the responsibility area of a peer

29

Degree k-DeBruijn-Graph

- Consider alphabet using k letters, e.g. k = 3
- Now, every k-De Bruijnnode has successors
 - (kx mod km)
 - (kx +1 mod km)
 - (kx+2 mod km)
 - ... (kx+k-1 mod km)
- Diameter is reduced to
 - (log m)/(log k)
- Graph connectivity is increased to k

k-Koorde CoNe Freiburg

- Straight-forward generalization of Koorde
 - by using k-De Bruijn graphs
- Improves lookup time and messages to O((log n)/(log k)) steps

Peer-to-Peer Networks 07 Degree Optimal Networks

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG