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Diameter and Degree in Graphs

 CHORD:

- degree O(log n)

- diameter O(log n)

 Is it possible to reach a smaller diameter with degree g=O(log n)?

- In the neighborhood of a node are at most g nodes

- In the 2-neighborhood of node are at most g2 nodes

- ...

- In the d-neighborhood of node are at most gd nodes

 So,

 Therefore

 So, Chord is quite close to the optimum diameter.
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Are there P2P-Netzwerke with constant out-

degree and diameter log n?

 CAN

- degree: 4

- diameter: n1/2

 Can we reach diameter O(log n) with constant 

degree?
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Continuous Graphs

 are infinite graphs with 
continuous node sets 
and edge sets

 The underlying graph

- x ∈ [0,1)

- Edges:

• (x,x/2), left edges

• (x,1+x/2), right edges

- plus revers edges.

• (x/2,x)

• (1+x/2,x)
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The Transition from Continuous to Discrete 

Graphs

 Consider discrete intervals resulting 

from a partition of the continuous 

space 

 Insert edge between interval A and 

B  

- if there exists x ∈ A and y ∈ B such that 

edge (x,y) exists in the continuous graph

 Intervals result from successive 

partitioning (halving) of existing 

intervals

 Therefore the degree is constant if

- the ratio between the size of the largest 

and smallest interval is constant

 This can be guarranteed by the 

principle of multiple choice

- which we present later on
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Principle of Multiple Choice

‣ Before inserted check c log n positions

‣ For position p(j) check the distance a(j) between potential left 

and right neighbor

‣ Insert element at position p(j) in the middle between left and 

right neighbor, where a(j) was the maximum choice

‣ Lemma

• After inserting n elements with high probability only intervals of 

size 1/(2n), 1/n  und 2/n occur.
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Proof of Lemma

1st Part: With high probability there is no interval of size 

larger than 2/n

follows from this Lemma

Lemma*

Let c/n be the largest interval. After inserting 2n/c peers 

all intervals are smaller than c/(2n) with high probability

From applying this lemma for c=n/2,n/4, ...,4 the first 

lemma follows.
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Proof

‣ 2nd part: No intervals smaller than 1/(2n) occur

• The overall length of intervals of size 1/(2n) before inserting is at 

most 1/2

• Such an area is hit with probability at most 1/2

• The probability to hit this area more than c log n times is at least

• Then for c>1 such an interval will not further be divided  with 

probability into an interval of size 1/(4m). 

9



 Theorem Chernoff Bound

- Let x1,...,xn independent Bernoulli experiments with

• P[xi = 1] = p

• P[xi = 0] = 1-p

- Let

- Then for all c>0

- For 0≤c≤1

Chernoff-Bound
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Proof of Lemma*

 Consider the longest 

interval of size c/n. Then 

after inserting 2n/c peers all 

intervals are smaller than

c/(2n) with high probability.

 Consider an interval of 

length c/n

 With probability c/n such an 

interval will be hit

 Assume, each peer 

considers t log n intervals

 The expected number of 

hits is therefore

 From the Chernoff bound it 

follows

 If                   then this 

interval will be hit at least

times

 Choose

 Then, every interval is 

partitioned w.h.p.
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Lookup in Distance-Halving

 Map start/target 

to new-

start/target by 

using left edges

 Follow all left 

edges for 2+ log 

n steps

 Then, the new-

new...-new-start 

and the new-

new-...new-target 

are neighbored.
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Lookup in Distance-Halving

13

 Follow all left 

edges for 2+ log n 

steps

- Use neighbor 

edge to go from 

new*-start to 

new*-target

 Then follow the 

reverse left edges 

from newm+1
-

target to newm-

target



Structure of Distance-Halving

 Peers are mapped to the intervals

- uses DHT for data

 Additional neighbored intervals are connected 

by pointers

 The largest interval has size 2/n w.h.p. 

- i.e. probability 1-n-c for some constant c

 The smallest interval size 1/(2n) w.h.p.

 Then the indegree and outdegree is constant

 Diameter is O(log n)

- which follows from the routing
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Lookup in Distance-Halving
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 This works also using only right edges



Lookup in Distance-Halving
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 This works also using a mixture of right and left  edges



Congestion Avoidance during Lookup

 Left and right-edges can be used in any ordering

- if one stores the combination for the reverse edges

 Analog to Valiant‘s routing result for the hyper-

cube one can show

 The congestion ist at most O(log n),

- i.e. every peer transports at most a factor of O(log n) 

more packets than any optimal network would need

 The same result holds for the Viceroy network
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Inserting peers in Distance-Halving

1.Perform multiple choice principle

 i.e. c log n queries for random intervals

 Choose largest interval

 halve this interval

2.Update ring edges

3.Update left and right edges

 by using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most 

O(log2 n) time and messages.
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Summary Distance-Halving

 Simple and efficient peer-to-peer network

- degree O(1)

- diameter O(log n)

- load balancing

- traffic balancing

- lookup complexity O(log n)

- insert O(log2n)

 We already have seen continuous graphs in other 
approaches

- Chord

- CAN

- Koorde

- ViceRoy
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Shuffle, Exchange, Shuffle-Exchange

 Consider binary string s of length m

- shuffle operation:

• shuffle(s1, s2, s3,..., sm) = 

(s2,s3,..., sm,s1)

- exchange:

• exchange(s1, s2, s3,..., sm) = 

(s1, s2, s3,..., ¬sm)

- shuffle exchange:

• SE(S) = exchange(shuffle(S))

= (s2,s3,..., sm, ¬ s1 )

 Observation:

Every string a can be transformed into a 

string b by at most m shuffle and shuffle 

exchange operations

Shuffle

Exchange

Shuffle-Exchange
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Magic Trick

 Observation

Every string a can be transformed into a 

string b by at most m shuffle and shuffle 

exchange operations Beispiel:

From 0    1    1    1    0    1    1 

to 1    0    0    1    1    1    1

via SE SE SE S   SE S   S

operations

SE

SE

S

S

S

SE

SE
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The De Bruijn Graph

 A De Bruijn graph consists of 
n=2m nodes,

- each representing an m digit 
binary strings

 Every node has two outgoing 
edges

- (u,shuffle(u))

- (u, SE(u))

 Lemma

- The De Bruijn graph has degree 2 
and diameter log n

 Koorde = Ring + DeBruijn-
Graph
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Koorde = Ring + DeBruijn-Graph

Consider ring with 2m nodes and De Bruijn edges
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Koorde = Ring + DeBruijn-Graph

 Note

- shuffle(s1, s2,..., sm) =

(s2,..., sm,s1)

• shuffle (x) = 

(x div 2m-1)+(2x) mod 2m

- SE(S) = (s2,s3,..., sm, ¬ s1 )

• SE(x) = 

1-(x div 2m-1)+(2x) mod 2m

- Hence: Then neighbors of x 

are

• 2x mod 2m and

• 2x+1 mod 2m
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Virtual DeBruijn Nodes

 To avoid collisions we 
choose 

- m > (2+c) log (n)

 Then the probability of two 
peers colliding is at most n-c

 But then we have much mor 
nodes in the graph than 
peers in the network

 Solution

- Every peer manages all  
DeBruijn nodes between his 
position and his successor on 
the ring

- only for incoming edges

- outgoing edges are considered 
only from the peer‘s poisition on 
the ring
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Properties of Koorde

 Theorem

- Every node has four pointers

- Every node has at most O(log n) incoming pointers 

w.h.p.

- The diameter is O(log n) w.h.p.

- Lookup  can be performed in time O(log n) w.h.p.

 But:

- Connectivity of the network is very low.
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Properties of Koorde

 Theorem

- 1. Every node has four pointers

- 2. Every node has at most O(log n) 

incoming pointers w.h.p.

 Proof:

- 1. follows from the definition of the 

De Bruijn graph and the 

observation that only non-virtual 

nodes have outgoing edges

- 2. The distance between two 

peers is at most c (log n)/n 2m

with high probability

- The number of nodes pointing to 

this distance is therefore at most 

c (log n)  with high probability
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Properties of Koorde

 Theorem

- The diameter is O(log n) w.h.p.

- Lookup  can be performed in time O(log n) w.h.p.

 Proof sketch:

- The minimal distance of two peers is at least n-c 2m 

w.h.p.

- Therefore use only the c log n most significant bits in 

the routing

• since the prefix guarantees that one end in the 

responsibility area of a peer

- Follow the routing algorithm on the De Bruijn-graph until 

one ends in the responsibility area of a peer
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Degree k-DeBruijn-Graph

 Consider alphabet using 

k letters, e.g. k = 3

 Now, every k-De Bruijn-

node has successors

- (kx mod km)

- (kx +1 mod km)

- (kx+2 mod km)

- ... (kx+k-1 mod km) 

 Diameter is reduced to

- (log m)/(log k)

 Graph connectivity is 

increased to k
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k-Koorde

 Straight-forward 

generalization of 

Koorde

- by using k-De Bruijn 

graphs

 Improves lookup time 

and messages to

O((log n)/(log k)) steps
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