A\

CoNe
Freiburg

Peer-to-Peer Networks
07 Degree Optimal Networks

Christian Ortolf

Technical Faculty
Computer-Networks and Telematics
University of Freiburg



A, Diameter and Degree In Graphs
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CHORD:

- degree O(log n)

- diameter O(log n)

Is it possible to reach a smaller diameter with degree g=0(log n)?
- In the neighborhood of a node are at most g nodes

- In the 2-neighborhood of node are at most g2 nodes

- In the d-neighborhood of node are at most g9 nodes

=0 (logn)® =n

Therefore log n
d

- log logn

So, Chord Is quite close to the optimum diameter.



A Arethere P2P-Netzwerke with constant out-
reonerg  degree and diameter log n?

CAN
- degree: 4
- diameter: nt/?

Can we reach diameter O(log n) with constant
degree?



A Degree Optimal Networks
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Distance Halving

Moni Naor, Udi Wieder
2003



A Continuous Graphs
Freiburg

are infinite graphs with
continuous node sets
and edge sets

(X,x/2)

The underlying graph
- x €[0,1)

«<)O

- Edges:
(x,x/2), left edges
(X,1+x/2), right edges
- plus revers edges.
(x/2,X)
(1+x/2,X)

(x,1/2 + x/2)



A The Transition from Continuous to Discrete
Ff:irl:lelrg Graphs

i i i - X/2
Consider discrete intervals resulting oXi2)

from a partition of the continuous

space 0
Insert edge between interval A and

B

- If there exists x € A and y € B such that
edge (x,y) exists in the continuous graph (x,1/2 + x/2)

Intervals result from successive
partitioning (halving) of existing
Intervals

Therefore the degree is constant if

- the ratio between the size of the largest
and smallest interval is constant

This can be guarranteed by the
principle of multiple choice

- which we present later on

(x,Xx/2)

(x,1/2 + x/2)



A, Principle of Multiple Choice
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Before inserted check ¢ log n positions

For position p(j) check the distance a(j) between potential left
and right neighbor

Insert element at position p(j) in the middle between left and
right neighbor, where a(j) was the maximum choice

Lemma

« After inserting n elements with high probabillity only intervals of
size 1/(2n), 1/n und 2/n occur.



A Proof of Lemma
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1st Part: With high probability there is no interval of size
larger than 2/n

follows from this Lemma
Lemma*

Let c/n be the largest interval. After inserting 2n/c peers
all intervals are smaller than c/(2n) with high probability

From applying this lemma for c=n/2,n/4, ...,4 the first
lemma follows.



A Proof
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2nd part: No intervals smaller than 1/(2n) occur

« The overall length of intervals of size 1/(2n) before inserting is at
most 1/2

« Such an area is hit with probability at most 1/2
* The probability to hit this area more than c log n times is at least
)€ logn __ n €
« Then for c>1 such an interval will not further be divided with
probability into an interval of size 1/(4m).



A.  Chernoff-Bound
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Theorem Chernoff Bound
- Let X1,...,Xn Independent Bernoulli experiments with

Pxi=1]=p
P[xi=0]=1-p
) Let S‘r.'. — i: L
1=1

- Then for all ¢c>0

e + min{ c,c” bpn

P[S, > (1 +¢) - E[S,]]

VA

- For 0<c<1

1

P[S, < (1—¢)-E[S,]] < o~ cPpm



A Proof of Lemma*
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Consider the longest

interval of size ¢/n. Then From the Chernoff bound it
after inserting 2n/c peers all follows

Intervals are smaller than i 52y
¢/(2n) with high probability. PIX <(1-9)E[X]]<n™°"
Consider an interval of 524 > 9 |

Interval will be hit at least

With probabillity ¢/n such an 2(1 — §)tlog n times

iInterval will be hit
Assume, each peer

considers t log n intervals Choose 2(1—-9)>1
The expected number of 5 > 1 b < Lo
hits is therefore 2
c on Then, every interval Is
ElX|=—-— tlogn=2tlogn partitioned w.h.p.

n C



A, Lookup in Distance-Halving

Map start/target f= ~
to new- ‘ or———e—¢
start/target by new-start start ne

using left edges w-target

Follow all left e o g =]
edges for 2+ log M
n steps |—oﬁa—c O
Then, the new- NEw -  New' = new - new. -
new...-new-start start  slart  target target
and the new-

new-...new-target -

are neighbored.

“

S ——
Mo

newslat= new’ s
new slart  largel  yg0a1



A Lookup in Distance-Halving
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Follow all left start target
edges for 2+ log n |

O
Steps l new-start \_//._K/’/i.

i new-targe
- Use neighbor ew-target

edge to go from | ’”*‘_/5_0/_\
new*-start to ‘ " o,

new*-target ..,--- wews hew new
starl  farget largel
Then follow the
reverse left edges | r-q/\‘,‘/\ |
1
from new™* LL, starle - |
target to new™- WA el Largel

target



A, Structure of Distance-Halving
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Peers are mapped to the intervals
- uses DHT for data

Additional neighbored intervals are connected
by pointers

The largest interval has size 2/n w.h.p.
- I.e. probabillity 1-n for some constant c

The smallest interval size 1/(2n) w.h.p.
Then the indegree and outdegree Is constant

Diameter i1s O(log n)
- which follows from the routing



A Lookup In Distance-Halving
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This works also using only right edges

'[Erg,at EtEI‘l

new-start

new-target

[

Largel

L e - Siart=
larget  New-starl

15



A, Lookup in Distance-Halving

This works also using a mixture of right and left edges

target Eti"l/,-\‘

| _?\,f'

D G U




A Congestion Avoidance during Lookup
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Left and right-edges can be used in any ordering
- If one stores the combination for the reverse edges

Analog to Valiant's routing result for the hyper-
cube one can show

The congestion ist at most O(log n),

- 1.e. every peer transports at most a factor of O(log n)
more packets than any optimal network would need

The same result holds for the Viceroy network



A, Inserting peers in Distance-Halving
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1.Perform multiple choice principle
* |.e. c log n queries for random intervals
= Choose largest interval
= halve this interval

2.Update ring edges

3.Update left and right edges
» by using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most
O(log? n) time and messages.



A Summary Distance-Halving
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Simple and efficient peer-to-peer network
- degree O(1)

- diameter O(log n)

- load balancing

- traffic balancing

- lookup complexity O(log n)

- insert O(log?n)

We already have seen continuous graphs in other
approaches

- Chord

- CAN

- Koorde
- ViceRoy
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Degree Optlmal Networks

Koorde

M. Frans Kaashoek and David R.
Karger 2003



A, Shuffle, Exchange, Shuffle-Exchange
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Consider binary string s of length m

- shuffle operation:

- shuffle exchange:

SE(S) = exchange(shuffle(S))
= (S5,S3,..-, Sy, 7 S1)
Observation:

Every string a can be transformed into a
string b by at most m shuffle and shuffle
exchange operations

Shuffle

0111011

[ [ [ [ /[
l‘!"‘l‘!‘ﬁ

1TH11{1[{O|{1]]1[|O

Exchange

o) 1][1][1][0][1]]1
Y VYV Y YY
oj{1][1][1]lo]|1]]0

Shuffle-Exchange

Of{1|(1[|T[O]1]]T

[ )]
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THTHT|O[T 1]




A Magic Trick
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Observation

Every string a can be transformed into a
string b by at most m shuffle and shuffle
exchange operations Beispiel:

From O 1 1 1 0 1 1

to 1 0 0 1 1 1 1
via SESESES SE S S
operations
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A, The De Bruijn Graph
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A De Bruijn graph consists of
n=2m nodes,

- each representing an m digit
binary strings

Every node has two outgoing

edges

- (u,shuffle(u))

- (u, SE(u))

Lemma

- The De Bruijn graph has degree 2
and diameter log n

Koorde = Ring + DeBruijn-
Graph

000

001

100

010

101

011

111

110




A, Koorde = Ring + DeBruijn-Graph
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»Consider ring with 2™ nodes and De Bruijn edges

§_7
0(20 '\‘

111 001

\

110 010

i

101 \\‘ // 011
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A, Koorde = Ring + DeBruijn-Graph
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Note

- shuffle(si, S2,..., Sm) =
(SZ ..... Sm,Sl)

shuffle (x) =
(x div 2™1)+(2x) mod 2™

- SE(S) = (s2,83,..., Sm, 7 S1)

SE(X) =
1-(x div 2M™-1)+(2x) mod 2™

- Hence: Then neighbors of x
are
2X mod 2™ and

2x+1 mod 2M
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To avoid collisions we
choose

- m > (2+c) log (n)

Then the probabillity of two
peers colliding Iis at most n©

But then we have much mor
nodes in the graph than
peers in the network

Solution

- Every peer manages all
DeBruijn nodes between his
position and his successor on
the ring

- only for incoming edges

- outgoing edges are considered
only from the peer’s poisition on
the ring

A Virtual DeBruijn Nodes

O(log n) Peers
in the interval of
length

¢ (log n)/n oM

virtual
DeBrujin-nodes in the
responsibility

~range of a peer




A\ Properties of Koorde
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Theorem
- Every node has four pointers

- Every node has at most O(log n) incoming pointers
w.h.p.

- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.

But:
- Connecitivity of the network is very low.



A\ Properties of Koorde
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Theorem virtual
i DeBrujin-nodes in the
- 1. Every node has four pointers relspmsimmy

- 2. Every node has at most O(log n) . .range ofapeer

Incoming pointers w.h.p.
Proof:

- 1. follows from the definition of the
De Bruijn graph and the
observation that only non-virtual
nodes have outgoing edges

- 2. The distance between two
peers is at most ¢ (log n)/n 2™
with high probability

O(log n) Peers
in the interval of

- The number of nodes pointing to length

this distance iIs therefore at most
c (log n) with high probability

¢ (log n)/n oM
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Theorem
- The diameter is O(log n)

A\ Properties of Koorde

w.h.p.

- Lookup can be performed in time O(log n) w.h.p.

Proof sketch:

- The minimal distance of two peers Is at least n"¢ 2™

w.h.p.

- Therefore use only the c
the routing

log n most significant bits In

since the prefix guarantees that one end in the

responsibility area of a

- Follow the routing algorit
one ends In the responsi

neer
nm on the De Bruijn-graph until

nility area of a peer
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Consider alphabet using
K letters, e.g. k=3

Now, every k-De Bruijn-
node has successors

- (kx mod km)

- (kx +1 mod km)

- (kx+2 mod km)

- ... (kxtk-1 mod km)

Diameter Is reduced to
- (log m)/(log k)

Graph connectivity Is
iIncreased to k

00

A\ Degree k-DeBruijn-Graph
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A Kk-Koorde
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Straight-forward

generalization of

Koorde

- by using k-De Bruijn
graphs

Improves lookup time

and messages to

O((log n)/(log k)) steps

00

01
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