Peer-to-Peer Networks
07 Degree Optimal Networks

Christian Ortolf
Technical Faculty
Computer-Networks and Telematics
University of Freiburg
Diameter and Degree in Graphs

- **CHORD:**
 - degree $O(\log n)$
 - diameter $O(\log n)$

- Is it possible to reach a smaller diameter with degree $g=O(\log n)$?
 - In the neighborhood of a node are at most g nodes
 - In the 2-neighborhood of node are at most g^2 nodes
 - ...
 - In the d-neighborhood of node are at most g^d nodes

- So,
 \[
 (\log n)^d = n
 \]

- Therefore
 \[
 d = \frac{\log n}{\log \log n}
 \]

- So, Chord is quite close to the optimum diameter.
Are there P2P-Netzwerke with constant out-degree and diameter log n?

- **CAN**
 - degree: 4
 - diameter: $n^{1/2}$

- Can we reach diameter $O(\log n)$ with constant degree?
Degree Optimal Networks

Distance Halving

Moni Naor, Udi Wieder
2003
Continuous Graphs

- are infinite graphs with continuous node sets and edge sets

- The underlying graph
 - $x \in [0,1)$
 - Edges:
 - $(x,x/2)$, \textit{left edges}
 - $(x,1+x/2)$, \textit{right edges}
 - plus revers edges.
 - $(x/2,x)$
 - $(1+x/2,x)$
The Transition from Continuous to Discrete Graphs

- Consider discrete intervals resulting from a partition of the continuous space.
- Insert edge between interval A and B - if there exists $x \in A$ and $y \in B$ such that edge (x,y) exists in the continuous graph.
- Intervals result from successive partitioning (halving) of existing intervals.
- Therefore the degree is constant if - the ratio between the size of the largest and smallest interval is constant.
- This can be guaranteed by the principle of multiple choice - which we present later on.
Principle of Multiple Choice

- Before inserted check \(c \log n \) positions
- For position \(p(j) \) check the distance \(a(j) \) between potential left and right neighbor
- Insert element at position \(p(j) \) in the middle between left and right neighbor, where \(a(j) \) was the maximum choice

Lemma
- After inserting \(n \) elements with high probability only intervals of size \(1/(2n), 1/n \), and \(2/n \) occur.
Proof of Lemma

1st Part: With high probability there is no interval of size larger than $2/n$

follows from this Lemma

Lemma*

Let c/n be the largest interval. After inserting $2n/c$ peers all intervals are smaller than $c/(2n)$ with high probability

From applying this lemma for $c=n/2, n/4, ..., 4$ the first lemma follows.
Proof

2nd part: No intervals smaller than 1/(2n) occur

• The overall length of intervals of size 1/(2n) before inserting is at most 1/2
• Such an area is hit with probability at most 1/2
• The probability to hit this area more than c log n times is at least

\[2^{-c \log n} = n^{-c}\]

• Then for c>1 such an interval will not further be divided with probability into an interval of size 1/(4m).
Theorem Chernoff Bound
- Let x_1, \ldots, x_n independent Bernoulli experiments with
 - $P[x_i = 1] = p$
 - $P[x_i = 0] = 1 - p$
- Let $S_n = \sum_{i=1}^{n} x_i$
- Then for all $c > 0$
 \[P[S_n \geq (1 + c) \cdot \mathbb{E}[S_n]] \leq e^{-\frac{1}{3} \min\{c, c^2\} pn} \]
- For $0 \leq c \leq 1$
 \[P[S_n \leq (1 - c) \cdot \mathbb{E}[S_n]] \leq e^{-\frac{1}{2} c^2 pn} \]
Proof of Lemma*

- Consider the longest interval of size c/n. Then after inserting $2n/c$ peers all intervals are smaller than $c/(2n)$ with high probability.
- Consider an interval of length c/n.
- With probability c/n such an interval will be hit.
- Assume, each peer considers $t \log n$ intervals.
- The expected number of hits is therefore

$$E[X] = \frac{c}{n} \cdot \frac{2n}{c} \cdot t \log n = 2t \log n$$

- From the Chernoff bound it follows

$$P[X \leq (1 - \delta)E[X]] \leq n^{-\delta^2 t}$$

- If $\delta^2 t \geq 2$ then this interval will be hit at least $2(1 - \delta)t \log n$ times.

- Choose $2(1 - \delta) \geq 1$

$$\delta \geq \frac{1}{2}, \quad t \leq \frac{1}{2} \delta^2$$

- Then, every interval is partitioned w.h.p.
Lookup in Distance-Halving

- Map start/target to new-start/target by using left edges
- Follow all left edges for $2 + \log n$ steps
- Then, the new-new...-new-start and the new-new...new-target are neighbored.
- Follow all left edges for $2+\log n$ steps
- Use neighbor edge to go from $\text{new}^*-\text{start}$ to $\text{new}^*-\text{target}$
- Then follow the reverse left edges from $\text{new}^{m+1}-\text{target}$ to $\text{new}^m-\text{target}$
Structure of Distance-Halving

- Peers are mapped to the intervals
 - uses DHT for data
- Additional neighbored intervals are connected by pointers
- The largest interval has size $2/n$ w.h.p.
 - i.e. probability $1-n^{-c}$ for some constant c
- The smallest interval size $1/(2n)$ w.h.p.
- Then the indegree and outdegree is constant
- Diameter is $O(\log n)$
 - which follows from the routing
Lookup in Distance-Halving

- This works also using only right edges
Lookup in Distance-Halving

- This works also using a mixture of right and left edges
Congestion Avoidance during Lookup

- Left and right-edges can be used in any ordering
 - if one stores the combination for the reverse edges

- Analog to Valiant’s routing result for the hypercube one can show

- The congestion is at most $O(\log n)$,
 - i.e. every peer transports at most a factor of $O(\log n)$ more packets than any optimal network would need

- The same result holds for the Viceroy network
Inserting peers in Distance-Halving

1. Perform multiple choice principle
 - i.e. $c \log n$ queries for random intervals
 - Choose largest interval
 - Halve this interval

2. Update ring edges

3. Update left and right edges
 - By using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most $O(\log^2 n)$ time and messages.
Summary Distance-Halving

- Simple and efficient peer-to-peer network
 - degree $O(1)$
 - diameter $O(\log n)$
 - load balancing
 - traffic balancing
 - lookup complexity $O(\log n)$
 - insert $O(\log^2 n)$

- We already have seen continuous graphs in other approaches
 - Chord
 - CAN
 - Koorde
 - ViceRoy
Degree Optimal Networks

Koorde
M. Frans Kaashoek and David R. Karger 2003
Consider binary string s of length m

- shuffle operation:
 - $\text{shuffle}(s_1, s_2, s_3, \ldots, s_m) = (s_2, s_3, \ldots, s_m, s_1)$

- exchange:
 - $\text{exchange}(s_1, s_2, s_3, \ldots, s_m) = (s_1, s_2, s_3, \ldots, \neg s_m)$

- shuffle exchange:
 - $\text{SE}(S) = \text{exchange}(\text{shuffle}(S)) = (s_2, s_3, \ldots, s_m, \neg s_1)$

Observation:

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations.
Observation

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations Beispiel:

From 0 1 1 1 0 1 1

to 1 0 0 1 1 1 1

via SE SE SE S SE S S

operations
A De Bruijn graph consists of $n=2^m$ nodes,
- each representing an m digit binary strings

Every node has two outgoing edges
- $(u, \text{shuffle}(u))$
- $(u, \text{SE}(u))$

Lemma
- The De Bruijn graph has degree 2 and diameter $\log n$

Koorde = Ring + DeBruijn-Graph
Koorde = Ring + DeBruijn-Graph

Consider ring with 2^m nodes and De Bruijn edges
Koorde = Ring + DeBruijn-Graph

- **Note**
 - shuffle(s₁, s₂,..., sₘ) = (s₂,..., sₘ,s₁)
 - shuffle (x) = (x div 2^{m-1})+(2x) mod 2^m
 - SE(S) = (s₂,s₃,..., sₘ, ¬s₁)
 - SE(x) = 1-(x div 2^{m-1})+(2x) mod 2^m
 - Hence: Then neighbors of x are
 - 2x mod 2^m and
 - 2x+1 mod 2^m
Virtual DeBruijn Nodes

- To avoid collisions we choose
 - \(m > (2+c) \log (n) \)
- Then the probability of two peers colliding is at most \(n^{-c} \)
- But then we have much more nodes in the graph than peers in the network

Solution
- Every peer manages all DeBruijn nodes between his position and his successor on the ring
 - only for incoming edges
 - outgoing edges are considered only from the peer’s position on the ring
Properties of Koorde

- **Theorem**
 - Every node has four pointers
 - Every node has at most $O(\log n)$ incoming pointers w.h.p.
 - The diameter is $O(\log n)$ w.h.p.
 - Lookup can be performed in time $O(\log n)$ w.h.p.

- **But:**
 - Connectivity of the network is very low.
Properties of Koorde

- Theorem
 - 1. Every node has four pointers
 - 2. Every node has at most \(O(\log n)\) incoming pointers w.h.p.

- Proof:
 - 1. follows from the definition of the De Bruijn graph and the observation that only non-virtual nodes have outgoing edges
 - 2. The distance between two peers is at most \(c \frac{\log n}{n} 2^m\) with high probability
 - The number of nodes pointing to this distance is therefore at most \(c \frac{\log n}{n} 2^m\) with high probability
Properties of Koorde

- **Theorem**
 - The diameter is \(O(\log n) \) w.h.p.
 - Lookup can be performed in time \(O(\log n) \) w.h.p.

- **Proof sketch:**
 - The minimal distance of two peers is at least \(n^{-c} 2^m \) w.h.p.
 - Therefore use only the \(c \log n \) most significant bits in the routing
 - since the prefix guarantees that one end in the responsibility area of a peer
 - Follow the routing algorithm on the De Bruijn-graph until one ends in the responsibility area of a peer
Consider alphabet using k letters, e.g. $k = 3$

Now, every k-De Bruijn-node has successors:
- $(kx \mod km)$
- $(kx + 1 \mod km)$
- $(kx + 2 \mod km)$
- ... $(kx + k - 1 \mod km)$

Diameter is reduced to
- $(\log m)/(\log k)$

Graph connectivity is increased to k
k-Koorde

- Straight-forward generalization of Koorde
 - by using k-De Bruijn graphs
- Improves lookup time and messages to $O((\log n)/(\log k))$ steps
Peer-to-Peer Networks
07 Degree Optimal Networks

Christian Ortolf
Technical Faculty
Computer-Networks and Telematics
University of Freiburg