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Kelips

 Indranil Gupta, Ken Birman, 

Prakash Linga, Al Demers, 

Robbert van Renesse

- Cornell University, Ithaca, New 

York

 Kelip-kelip

- malay name for synchronizing 

fireflies

 P2P Network

- uses DHT

- constant lookup time

- O(n1/2) storage size

- fast and robust update
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Kelips Overview

 Peers are organized in k 

affinity groups

- peer position chosen by DHT 

mechanism

- k is chosen as n1/2 for n peers

 Data is mapped to an affinity 

group using DHT

- all members of an affinity group 

store all data

 Routing Table

- each peer knows all members of 

the affinity group

- each peer knows at least one 

member of each affinity group

 Updates

- are performed by epidemic 

algorithms

3



Routing Table

 Affinity Group View

- Links to all O(n/k) group members

- This set can be reduced to a partial set 

as long as the update mechanism 

works

 Contacts

- For each of the other affinity group a 

small (constant-sized) set of nodes

- O(k) links

 Filetuples

- A (partial) set of tuples, each detailing 

a file name and host IP address of the 

node storing the file

- O(F/k) entries, if F is the overall 

number of files

 Memory Usage: O(n/k + k + F/k)

- for 
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Lookup

 Lookup-Algorithm

- compute index 

value

- find affinity group 

using hash function

- contact peer from 

affinity group

- receive index entry 

for file (if it exists)

- contact peer with 

the document

 Kelips needs four 

hops to retrieve a 

file
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Inserting a Peer

 Algorithm

- Every new peer is introduced  by a 

special peer, group or other method, 

• e.g. web-page, forum etc.

- The new peer computes its affinity 

group and contacts any peer

- The new peer asks for one contact 

of the affinity group and copies the 

contacts of the old affinity group

- By contacting a neighbor node in 

the affinity group it receives all the 

necessary contacts and index 

filetuples

- Every contact is replaced by a 

random replacement (suggested by 

the contact peer)

- The peer starts an epidemic 

algorithm to update all links

 Except the epidemic algorithm the 

runtime is O(k) and only O(k) 

messages are exchanged

6



How to Add a Document

 Start an Epidemic Algorithm to Spread the news in the 

affinity group

 Such an algorithm uses O(n/k) messages and needs O(log 

n) time

 We introduce Epidemic Algorithms later on
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How to Check Errors

 Kelip works in heartbeats, i.e. discrete timing

 In every heartbeat each peer checks one neighbor

 If a neighbor does not answer for some time

- it is declared to be dead

- this information is spread by an epidemic algorithm

 Using the heartbeat mechanisms all nodes also 

refresh their neighbors

 Kelips quickly detects missing nodes and updates 

this information
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Discussion

 Kelips has lookup time O(1), but needs O(n1/2) sized 

Routing Table

- not counting the O(F/n1/2) file tuples

 Chord, Pastry & Tapestry use lookup time O(log n) but 

only O(log n) memory units

 Kelips is a reasonable choice for medium sized networks

- up to some million peers and some hundred thousands index 

entries
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To Do

 What is an Epidemic Algorithm

10



11

Epidemic Spread of Viruses

 Observation

- most viruses do not prosper in real life

- other viruses are very successful and spread fast

 How fast do viruses spread?

 How many individuals of the population are infected?

 Problem

- social behavior and infection risk determine the spread

- the reaction of a society to a virus changes the epidemy

- viruses and individuals may change during the infection 
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Mathematical Models

 SI-Model (rumor spreading)

- susceptible → infected

 SIS-Model (birthrate/deathrate)

- susceptible → infected → susceptible

 SIR-Model

- susceptible → infected → recovered

 Continuous models

- deterministic

- or stochastic

 Lead to differential equations

 Discrete Models

- graph based models

- random call based

 Lead to the analysis of Markov Processes
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Infection Models

 SI-Model (rumor spreading)

- susceptible → infected

- At the beginning one individual is infected

- Every contact infects another indiviual 

- In every time unit there are in the expectation ß contacts

 SIS-Model (birthrate/deathrate)

- susceptible → infected → susceptible

- similar as in the SI-Model, yet a share of δ of all infected individuals 

is healed and can receive the virus again

- with probability δ an individual is susceptible again

 SIR-Model

- susceptible → infected → recovered

- like SI-Model, but healed individuals remain immune against the 

virus and do not transmit the virus again
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SI-Model

 Variables

- n: total number of individuals

• remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

 Relative shares

- s(t) := S(t)/n

- i(t) := I(t)/n

 At every time unit each individual contacts ß partners

 Assumptions:

- Among ß contact partnres ß s(t) are susceptible

- All I(t) infected individuals infect ß s(t) I(t) other individuals in each round

 Leads to the following recursive equations:

- I(t+1) =  I(t)  + ß s(t) I(t)

- i(t+1) =  i(t)  + ß i(t) s(t)

- S(t+1) = S(t) – ß s(t) I(t)

- s(t+1) = s(t) – ß i(t) s(t)



 i(t+1) =  i(t)  + ß i(t) s(t)

 s(t+1) = s(t) – ß i(t) s(t)

 Idea: 

- i(t) is a continuous function

- i(t+1)-i(t) approximate first derivative

 Solution:
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SI-Model

 The number of 

infected grows 

exponentially 

until half of all 

members are 

infected

 Then the 

number of 

susceptible 

decrease 

exponentially
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SIS-Model

 Variables

- n: total number of individuals

• remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

 Relative shares

- s(t) := S(t)/n

- i(t) := I(t)/n

 At every time unit each individual contacts ß partners
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SIS-Model

 Assumptions:

- Among ß contact partners ß s(t) are susceptible

- All I(t) infected individuals infect ß s(t) I(t) other individuals in each 

round

- A share of δ of all infected individuals is susceptible again

 Leads to the following recursive equations:

- I(t+1) =  I(t)  + ß i(t) S(t) – δ I(t)

- i(t+1) =  i(t)  + ß i(t) s(t) – δ i(t)

- S(t+1) = S(t) – ß i(t) S(t) + δ I(t)

- s(t+1) = s(t) – ß i(t) s(t) + δ i(t) 



 i(t+1) =  i(t)  + ß i(t) s(t) – δ i(t)

 s(t+1) = s(t) – ß i(t) s(t) + δ i(t)

 Idea: 

- i(t) is a continuous function

- i(t+1)-i(t) approximate first derivative

 Solution:

- for

19

SI-Model



20

SIS-Model

Interpretation of Solution

 If ß < δ

- then i(t) is strictly decreasing

 If ß > δ

- then i(t) converges against 

1 − ρ = 1 − δ/ß

 Same behavior in discrete model

has been observed 

- [Kephart,White‘94]
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SIR-Model

Variables

- n: total number of individuals

• remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

- R(t): number or recovered individ.

Relative shares

- s(t) := S(t)/n

- i(t) := I(t)/n

- r(t) := R(t)/n

At every time unit each individual contacts ß partners
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SIR-Model

 Assumptions:

- Among ß contact partners ß s(t) are susceptible

- All I(t) infected individuals infect ß s(t) I(t) other individuals in each round

- A share of δ of all infected individuals is immune (recovered) and never 

infected again

 Leads to the following recursive equations:

- I(t+1) =  I(t)  + ß i(t) S(t) – δ I(t)

- i(t+1) =  i(t)  + ß i(t) i(t) – δ i(t)

- S(t+1) = S(t) – ß i(t) S(t)

- s(t+1) = s(t) – ß i(t) s(t) 

- R(t+1) = R(t) + δ I(t)

- r(t+1) =  r(t) + δ i(t)
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SIR-Model

 The equations and its 

differential equations 

counterpart

- i(t+1) =  i(t)  + ß i(t) i(t) – δ i(t)

- s(t+1) = s(t) – ß i(t) s(t) 

- r(t+1) =  r(t) + δ i(t)

 No closed solution known

- hence numeric solution

 Example

- s(0) = 1

- i(0) = 1.27 10-6

- r(0) = 0

- ß = 0.5

- δ = 0.3333 
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Replicated Databases

 Same data storage at all locations

- new entries appear locally

 Data must be kept consistently

 Algorithm is supposed to be decentral and robust

- since connections and hosts are unreliable

 Not all databases are known to all

 Solutions

- Unicast

• New information is sent to all data servers

- Problem: 

• not all data servers are known and can be reached

- Anti-Entropy

• Every local data server contacts another one and exchanges all information

• total consistency check of all data

- Problem

• comunication overhead

 Epicast …
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Epidemic Algorithms

 Epicast

- new information is a rumor

- as long the rumor is new it is distributed

- Is the rumor old, it is known to all servers

 Epidemic Algorithm [Demers et al 87]

- distributes information like a virus

- robust alternative to BFS or flooding

 Communication method

- Push & Pull, d.h. infection after log3 n + O(log log n) rounds 

with high probability

 Problem:

- growing number of infections increases comunication effort

- trade-off between robustness and communication overhead
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SI-Model for Graphs

 Given a contact graph G=(V,E)

- n: number of nodes

- I(t) := number of infected nodes in round t

- i(t) = I(T)/n

- S(t) := number of susceptible nodes in round t

• I(t)+S(t)=n 

- s(t) = S(T)/n

 Infection:

- If u is infected in round t and (u,v) ∈ E, then v is infected in round t+1 

 Graph determines epidemics

 Complete graph:

- 1 time unit until complete infection

 Line graph

- n-1 time units until complete infection
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Epidemics in Static Random Graphs

 Random graph Gn,p

- n nodes

- Each directed edge occurs with independent probability p

 Expected indegre γ = p (n−1) 

 How fast does an epidemic spread in Gn,p, if γ ∈O(1) ?

 Observation für n>2:

- With probability ≥ 4−γ and ≤ e−γ

• a node has in-degree 0 and cannot be infected 

• a node has out-degree 0, and cannot infect others

 Implications:

- Random (static) graph is not a suitable graph for epidemics
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Random Call Model

 In each round a new contact graph Gt=(V,Et):

- Each node in Gt has out-degree 1

• chooses random node v out of V

 Infection models:

- Push-Model

• if u is infected and (u,v) ∈ Et, then v is infected in the next 

round

- Pull-Modell: 

• if v is infected and (u,v) ∈ Et, then u is infected in the next 

round
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Push Model
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Push Model
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Push Model
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Push Model
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Push Model
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Push Model
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Push Model
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Push Model
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Push Model

Start Phase

 3 cases for an infected node

1. it is the only one infecting a new node

2. it contacts an already infected node

3. it infects together with other infected nodes a new node

• this case is neglected in the prior deterministic case

- Probability for 1st or 3rd case  s(t) = 1-i(t)

- Probability for 2nd case i(t)

- Probability for 3rd case is at most i(t)

• since at most  i(t) are infected

 Probability of infection of a new node, if i(t) ≤ s(t)/2: 

- at least 1 – 2i(t)

 E[i(t+1)]  ≥  i(t) + i(t)(1 – 2 i(t)) = 2i(t) -2i(t)2 ≈  2 i(t) 



 If i(t) ≤ s(t)/2:

- E[i(t+1)]  ≥  2 i(t) – 2i(t)2  ≈  2 i(t) 

 Start phase: I(t) ≤ 2 c (ln n)2

- Variance of i(t+1) relatively large

- Exponential growth starts after some O(1) with high probability

 Exponential growth:  

I(t) ∈ [2 c (ln n)2, n/(log n)]

- Nearly doubling of infecting nodes with high probability, i.e. 1-O(n-c)

 Proof by Chernoff-Bounds

- For independent random variables Xi∈{0,1} with

- and any

- Let  = 1/(ln n) 

- E[Xm]   2 c (ln n)3

- Then 2 E[Xm] /2  c ln n

- This implies
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Start phase & Exponential Growth



 Probability of infections of a new node if i(t)  s(t)/2: 1 – 2i(t)

- E[i(t+1)]   2 i(t) – 2i(t)2  2 i(t) 

 Middle phase I(t)  [n/(log n), n/3]

- term 2i(t)2  2i(t)/(log n) cannot be neglected anymore

- Yet, 2i(t) – 2i(t)2  4/3 i(t) still implies expontential growth, 

but with base < 2

 Saturation: I(t)  n/3

- Probability that a susceptible node is not contacted by I(t) = c n 

infected nodes:

- This implies a constant probability for infection  1 – e–1/3 und  1 – e–

1

- Hence

E[s(t+1)]  e–i(t) s(t)  e–1/3 s(t)

- Chernoff-bounds imply that this holds with high probability

- Exponential shrinking of susceptible nodes

- Base converges to 1/e
39
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Middle Phase & Saturation
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Push Model
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Random Call Model

 Infection models:

- Push Model

• if u is infected and (u,v) ∈ Et, then v is infected in the next 

round

- Pull Model 

• if v is infected and (u,v) ∈ Et, then u is infected in the next 

round
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model

 Consider 

- an susceptible node and I(t) infected nodes

 Probability that a susceptible node contacts an infected node: i(t)

- E[s(t+1)]   

=   s(t) – s(t) i(t)   

=   s(t) (1 – i(t))   =   s(t)2

- E[i(t+1)] 

= 1-s(t)2

= 1 – (1 – i(t))2

= 2 i(t)  – i(t)2 ≈  2 i(t) 

• for small i(t)
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Pull Model

 Problem

- if i(t) ≤  (log n)2 then exponential growth is not with high probability

- O(log n) steps are needed to start eh growth with high probability

• yet in the expectation it grows exponentially

 After this phase

- If s(t) ≤ ½

• then the share of susceptible nodes is squared in each step

- This implies E[s(t+ O(log log n))]  = 0, 

- If i(t) ≥ ½ then after O(log log n) steps all nodes are infected with high 

probability
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Pull Model

i(t)
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Push&Pull Model

 Combines growth of Push and Pull

 Start phase: i(t) ≤ 2 c (ln n)2

- Push causes doubling of i(t) after O(1) rounds with high probability

 Exponential growth:

I(t) ∈ [2 c (ln n)2, n/(log n)]

- Push and Pull nearly triple in each round with high probability:

• i(t+1) ≥ 3 (1-1/(log n)) i(t)

 Middle phase: I(t) ∈ [n/(log n), n/3]

- Push and Pull

• slower exponential growth

 Quadratic shrinking: I(t)  ≥ n/3

- caused by Pull: 

- E[s(t+1)]   ≤   s(t)2

- The Chernoff bound implies with high probability

- s(t+1)   ≤   2 s(t)2 

- so after two rounds for s(t) ≤ 1/21/2

• s(t+2)   ≤   s(t)2 w.h.p.
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Push&Pull Model
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Max-Counter Algorithm

 Simple termination strategy

- If the rumor is older than maxctr, then stop transmission

 Advantages

- simple

 Disadvantage

- Choice of maxctr is critical

- If maxctr is too small then not all nodes are informed

- If maxctr is too large, then the message overhead is Ω(n maxctr)

 Optimal choice for push-communication

- maxctr = O(log n)

- Number of messages: O(n log n) 

 Pull communication

- maxctr = O(log n)

- Number of messages: O(n log n) 

 Push&Pull communication 

- maxctr = log3n + O(log log n)

- Number of messages: O(n log log n)
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Shenker‘s Min-Counter Algorithm

 Only is the rumor is seen as old then contact partners increase the age-

counter

 Shenkers Min-Counter-Algorithmus für maxctr = O( log log n)

- Every player P stores age-variable ctrR(P) for each rumor R 

- A: player P does not know the rumor:

• ctrR(P) ← 1

- B: If player P sees rumor for the first time 

• ctrR(P)  ← 1

- B: If partners Q1, Q2, …, Qm communicate with P in a round

- If mini{ctrR(Qi)} ≥ ctrR(P) then

• ctrR(P)  ← ctrR(P)  + 1

- C: If ctrR(P)  ≥ maxctr then

• tell the rumor for maxctr more rounds

• then D: stop sending the rumor

 Theorem 

- Shenkers Min-Counter algorithms informs all nodes using Push&Pull-communication in 

log3n + O(log log n) rounds with probability 1−n−c, 

using at most O(n log log n) messages.
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Shenker‘s Min-Counter-Algorithm

 Theorem 

- Shenkers Min-Counter 

algorithms informs all 

nodes using 

Push&Pull-

communication in 

log3n + O(log log n) 

rounds with probability 

1−n−c, using at most 

O(n log log n) 

messages.
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