
Peer-to-Peer Networks
08 Kelips and Epidemic Algorithms

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

Kelips

 Indranil Gupta, Ken Birman,

Prakash Linga, Al Demers,

Robbert van Renesse

- Cornell University, Ithaca, New

York

 Kelip-kelip

- malay name for synchronizing

fireflies

 P2P Network

- uses DHT

- constant lookup time

- O(n1/2) storage size

- fast and robust update

2

Copyrights @ 1998 - 2008 by TourMalaysia

Kelips Overview

 Peers are organized in k

affinity groups

- peer position chosen by DHT

mechanism

- k is chosen as n1/2 for n peers

 Data is mapped to an affinity

group using DHT

- all members of an affinity group

store all data

 Routing Table

- each peer knows all members of

the affinity group

- each peer knows at least one

member of each affinity group

 Updates

- are performed by epidemic

algorithms

3

Routing Table

 Affinity Group View

- Links to all O(n/k) group members

- This set can be reduced to a partial set

as long as the update mechanism

works

 Contacts

- For each of the other affinity group a

small (constant-sized) set of nodes

- O(k) links

 Filetuples

- A (partial) set of tuples, each detailing

a file name and host IP address of the

node storing the file

- O(F/k) entries, if F is the overall

number of files

 Memory Usage: O(n/k + k + F/k)

- for

4

Lookup

 Lookup-Algorithm

- compute index

value

- find affinity group

using hash function

- contact peer from

affinity group

- receive index entry

for file (if it exists)

- contact peer with

the document

 Kelips needs four

hops to retrieve a

file

5

Inserting a Peer

 Algorithm

- Every new peer is introduced by a

special peer, group or other method,

• e.g. web-page, forum etc.

- The new peer computes its affinity

group and contacts any peer

- The new peer asks for one contact

of the affinity group and copies the

contacts of the old affinity group

- By contacting a neighbor node in

the affinity group it receives all the

necessary contacts and index

filetuples

- Every contact is replaced by a

random replacement (suggested by

the contact peer)

- The peer starts an epidemic

algorithm to update all links

 Except the epidemic algorithm the

runtime is O(k) and only O(k)

messages are exchanged

6

How to Add a Document

 Start an Epidemic Algorithm to Spread the news in the

affinity group

 Such an algorithm uses O(n/k) messages and needs O(log

n) time

 We introduce Epidemic Algorithms later on

7

How to Check Errors

 Kelip works in heartbeats, i.e. discrete timing

 In every heartbeat each peer checks one neighbor

 If a neighbor does not answer for some time

- it is declared to be dead

- this information is spread by an epidemic algorithm

 Using the heartbeat mechanisms all nodes also

refresh their neighbors

 Kelips quickly detects missing nodes and updates

this information

8

Discussion

 Kelips has lookup time O(1), but needs O(n1/2) sized

Routing Table

- not counting the O(F/n1/2) file tuples

 Chord, Pastry & Tapestry use lookup time O(log n) but

only O(log n) memory units

 Kelips is a reasonable choice for medium sized networks

- up to some million peers and some hundred thousands index

entries

9

To Do

 What is an Epidemic Algorithm

10

11

Epidemic Spread of Viruses

 Observation

- most viruses do not prosper in real life

- other viruses are very successful and spread fast

 How fast do viruses spread?

 How many individuals of the population are infected?

 Problem

- social behavior and infection risk determine the spread

- the reaction of a society to a virus changes the epidemy

- viruses and individuals may change during the infection

12

Mathematical Models

 SI-Model (rumor spreading)

- susceptible → infected

 SIS-Model (birthrate/deathrate)

- susceptible → infected → susceptible

 SIR-Model

- susceptible → infected → recovered

 Continuous models

- deterministic

- or stochastic

 Lead to differential equations

 Discrete Models

- graph based models

- random call based

 Lead to the analysis of Markov Processes

13

Infection Models

 SI-Model (rumor spreading)

- susceptible → infected

- At the beginning one individual is infected

- Every contact infects another indiviual

- In every time unit there are in the expectation ß contacts

 SIS-Model (birthrate/deathrate)

- susceptible → infected → susceptible

- similar as in the SI-Model, yet a share of δ of all infected individuals

is healed and can receive the virus again

- with probability δ an individual is susceptible again

 SIR-Model

- susceptible → infected → recovered

- like SI-Model, but healed individuals remain immune against the

virus and do not transmit the virus again

14

SI-Model

 Variables

- n: total number of individuals

• remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

 Relative shares

- s(t) := S(t)/n

- i(t) := I(t)/n

 At every time unit each individual contacts ß partners

 Assumptions:

- Among ß contact partnres ß s(t) are susceptible

- All I(t) infected individuals infect ß s(t) I(t) other individuals in each round

 Leads to the following recursive equations:

- I(t+1) = I(t) + ß s(t) I(t)

- i(t+1) = i(t) + ß i(t) s(t)

- S(t+1) = S(t) – ß s(t) I(t)

- s(t+1) = s(t) – ß i(t) s(t)

 i(t+1) = i(t) + ß i(t) s(t)

 s(t+1) = s(t) – ß i(t) s(t)

 Idea:

- i(t) is a continuous function

- i(t+1)-i(t) approximate first derivative

 Solution:

15

SI-Model

SI-Model

 The number of

infected grows

exponentially

until half of all

members are

infected

 Then the

number of

susceptible

decrease

exponentially

16

17

SIS-Model

 Variables

- n: total number of individuals

• remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

 Relative shares

- s(t) := S(t)/n

- i(t) := I(t)/n

 At every time unit each individual contacts ß partners

18

SIS-Model

 Assumptions:

- Among ß contact partners ß s(t) are susceptible

- All I(t) infected individuals infect ß s(t) I(t) other individuals in each

round

- A share of δ of all infected individuals is susceptible again

 Leads to the following recursive equations:

- I(t+1) = I(t) + ß i(t) S(t) – δ I(t)

- i(t+1) = i(t) + ß i(t) s(t) – δ i(t)

- S(t+1) = S(t) – ß i(t) S(t) + δ I(t)

- s(t+1) = s(t) – ß i(t) s(t) + δ i(t)

 i(t+1) = i(t) + ß i(t) s(t) – δ i(t)

 s(t+1) = s(t) – ß i(t) s(t) + δ i(t)

 Idea:

- i(t) is a continuous function

- i(t+1)-i(t) approximate first derivative

 Solution:

- for

19

SI-Model

20

SIS-Model

Interpretation of Solution

 If ß < δ

- then i(t) is strictly decreasing

 If ß > δ

- then i(t) converges against

1 − ρ = 1 − δ/ß

 Same behavior in discrete model

has been observed

- [Kephart,White‘94]

21

SIR-Model

Variables

- n: total number of individuals

• remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

- R(t): number or recovered individ.

Relative shares

- s(t) := S(t)/n

- i(t) := I(t)/n

- r(t) := R(t)/n

At every time unit each individual contacts ß partners

22

SIR-Model

 Assumptions:

- Among ß contact partners ß s(t) are susceptible

- All I(t) infected individuals infect ß s(t) I(t) other individuals in each round

- A share of δ of all infected individuals is immune (recovered) and never

infected again

 Leads to the following recursive equations:

- I(t+1) = I(t) + ß i(t) S(t) – δ I(t)

- i(t+1) = i(t) + ß i(t) i(t) – δ i(t)

- S(t+1) = S(t) – ß i(t) S(t)

- s(t+1) = s(t) – ß i(t) s(t)

- R(t+1) = R(t) + δ I(t)

- r(t+1) = r(t) + δ i(t)

23

SIR-Model

 The equations and its

differential equations

counterpart

- i(t+1) = i(t) + ß i(t) i(t) – δ i(t)

- s(t+1) = s(t) – ß i(t) s(t)

- r(t+1) = r(t) + δ i(t)

 No closed solution known

- hence numeric solution

 Example

- s(0) = 1

- i(0) = 1.27 10-6

- r(0) = 0

- ß = 0.5

- δ = 0.3333

24

Replicated Databases

 Same data storage at all locations

- new entries appear locally

 Data must be kept consistently

 Algorithm is supposed to be decentral and robust

- since connections and hosts are unreliable

 Not all databases are known to all

 Solutions

- Unicast

• New information is sent to all data servers

- Problem:

• not all data servers are known and can be reached

- Anti-Entropy

• Every local data server contacts another one and exchanges all information

• total consistency check of all data

- Problem

• comunication overhead

 Epicast …

25

Epidemic Algorithms

 Epicast

- new information is a rumor

- as long the rumor is new it is distributed

- Is the rumor old, it is known to all servers

 Epidemic Algorithm [Demers et al 87]

- distributes information like a virus

- robust alternative to BFS or flooding

 Communication method

- Push & Pull, d.h. infection after log3 n + O(log log n) rounds

with high probability

 Problem:

- growing number of infections increases comunication effort

- trade-off between robustness and communication overhead

26

SI-Model for Graphs

 Given a contact graph G=(V,E)

- n: number of nodes

- I(t) := number of infected nodes in round t

- i(t) = I(T)/n

- S(t) := number of susceptible nodes in round t

• I(t)+S(t)=n

- s(t) = S(T)/n

 Infection:

- If u is infected in round t and (u,v) ∈ E, then v is infected in round t+1

 Graph determines epidemics

 Complete graph:

- 1 time unit until complete infection

 Line graph

- n-1 time units until complete infection

27

Epidemics in Static Random Graphs

 Random graph Gn,p

- n nodes

- Each directed edge occurs with independent probability p

 Expected indegre γ = p (n−1)

 How fast does an epidemic spread in Gn,p, if γ ∈O(1) ?

 Observation für n>2:

- With probability ≥ 4−γ and ≤ e−γ

• a node has in-degree 0 and cannot be infected

• a node has out-degree 0, and cannot infect others

 Implications:

- Random (static) graph is not a suitable graph for epidemics

28

Random Call Model

 In each round a new contact graph Gt=(V,Et):

- Each node in Gt has out-degree 1

• chooses random node v out of V

 Infection models:

- Push-Model

• if u is infected and (u,v) ∈ Et, then v is infected in the next

round

- Pull-Modell:

• if v is infected and (u,v) ∈ Et, then u is infected in the next

round

29

Push Model

30

Push Model

31

Push Model

32

Push Model

33

Push Model

34

Push Model

35

Push Model

36

Push Model

37

Push Model

Start Phase

 3 cases for an infected node

1. it is the only one infecting a new node

2. it contacts an already infected node

3. it infects together with other infected nodes a new node

• this case is neglected in the prior deterministic case

- Probability for 1st or 3rd case s(t) = 1-i(t)

- Probability for 2nd case i(t)

- Probability for 3rd case is at most i(t)

• since at most i(t) are infected

 Probability of infection of a new node, if i(t) ≤ s(t)/2:

- at least 1 – 2i(t)

 E[i(t+1)] ≥ i(t) + i(t)(1 – 2 i(t)) = 2i(t) -2i(t)2 ≈ 2 i(t)

 If i(t) ≤ s(t)/2:

- E[i(t+1)] ≥ 2 i(t) – 2i(t)2 ≈ 2 i(t)

 Start phase: I(t) ≤ 2 c (ln n)2

- Variance of i(t+1) relatively large

- Exponential growth starts after some O(1) with high probability

 Exponential growth:

I(t) ∈ [2 c (ln n)2, n/(log n)]

- Nearly doubling of infecting nodes with high probability, i.e. 1-O(n-c)

 Proof by Chernoff-Bounds

- For independent random variables Xi∈{0,1} with

- and any

- Let = 1/(ln n)

- E[Xm] 2 c (ln n)3

- Then 2 E[Xm] /2 c ln n

- This implies

38

Push Model

Start phase & Exponential Growth

 Probability of infections of a new node if i(t) s(t)/2: 1 – 2i(t)

- E[i(t+1)] 2 i(t) – 2i(t)2 2 i(t)

 Middle phase I(t) [n/(log n), n/3]

- term 2i(t)2 2i(t)/(log n) cannot be neglected anymore

- Yet, 2i(t) – 2i(t)2 4/3 i(t) still implies expontential growth,

but with base < 2

 Saturation: I(t) n/3

- Probability that a susceptible node is not contacted by I(t) = c n

infected nodes:

- This implies a constant probability for infection 1 – e–1/3 und 1 – e–

1

- Hence

E[s(t+1)] e–i(t) s(t) e–1/3 s(t)

- Chernoff-bounds imply that this holds with high probability

- Exponential shrinking of susceptible nodes

- Base converges to 1/e
39

Push Model

Middle Phase & Saturation

40

Push Model

41

Random Call Model

 Infection models:

- Push Model

• if u is infected and (u,v) ∈ Et, then v is infected in the next

round

- Pull Model

• if v is infected and (u,v) ∈ Et, then u is infected in the next

round

42

Pull Model

43

Pull Model

44

Pull Model

45

Pull Model

46

Pull Model

47

Pull Model

48

Pull Model

 Consider

- an susceptible node and I(t) infected nodes

 Probability that a susceptible node contacts an infected node: i(t)

- E[s(t+1)]

= s(t) – s(t) i(t)

= s(t) (1 – i(t)) = s(t)2

- E[i(t+1)]

= 1-s(t)2

= 1 – (1 – i(t))2

= 2 i(t) – i(t)2 ≈ 2 i(t)

• for small i(t)

49

Pull Model

 Problem

- if i(t) ≤ (log n)2 then exponential growth is not with high probability

- O(log n) steps are needed to start eh growth with high probability

• yet in the expectation it grows exponentially

 After this phase

- If s(t) ≤ ½

• then the share of susceptible nodes is squared in each step

- This implies E[s(t+ O(log log n))] = 0,

- If i(t) ≥ ½ then after O(log log n) steps all nodes are infected with high

probability

50

Pull Model

i(t)

51

Push&Pull Model

 Combines growth of Push and Pull

 Start phase: i(t) ≤ 2 c (ln n)2

- Push causes doubling of i(t) after O(1) rounds with high probability

 Exponential growth:

I(t) ∈ [2 c (ln n)2, n/(log n)]

- Push and Pull nearly triple in each round with high probability:

• i(t+1) ≥ 3 (1-1/(log n)) i(t)

 Middle phase: I(t) ∈ [n/(log n), n/3]

- Push and Pull

• slower exponential growth

 Quadratic shrinking: I(t) ≥ n/3

- caused by Pull:

- E[s(t+1)] ≤ s(t)2

- The Chernoff bound implies with high probability

- s(t+1) ≤ 2 s(t)2

- so after two rounds for s(t) ≤ 1/21/2

• s(t+2) ≤ s(t)2 w.h.p.

52

Push&Pull Model

53

Max-Counter Algorithm

 Simple termination strategy

- If the rumor is older than maxctr, then stop transmission

 Advantages

- simple

 Disadvantage

- Choice of maxctr is critical

- If maxctr is too small then not all nodes are informed

- If maxctr is too large, then the message overhead is Ω(n maxctr)

 Optimal choice for push-communication

- maxctr = O(log n)

- Number of messages: O(n log n)

 Pull communication

- maxctr = O(log n)

- Number of messages: O(n log n)

 Push&Pull communication

- maxctr = log3n + O(log log n)

- Number of messages: O(n log log n)

54

Shenker‘s Min-Counter Algorithm

 Only is the rumor is seen as old then contact partners increase the age-

counter

 Shenkers Min-Counter-Algorithmus für maxctr = O(log log n)

- Every player P stores age-variable ctrR(P) for each rumor R

- A: player P does not know the rumor:

• ctrR(P) ← 1

- B: If player P sees rumor for the first time

• ctrR(P) ← 1

- B: If partners Q1, Q2, …, Qm communicate with P in a round

- If mini{ctrR(Qi)} ≥ ctrR(P) then

• ctrR(P) ← ctrR(P) + 1

- C: If ctrR(P) ≥ maxctr then

• tell the rumor for maxctr more rounds

• then D: stop sending the rumor

 Theorem

- Shenkers Min-Counter algorithms informs all nodes using Push&Pull-communication in

log3n + O(log log n) rounds with probability 1−n−c,

using at most O(n log log n) messages.

55

Shenker‘s Min-Counter-Algorithm

 Theorem

- Shenkers Min-Counter

algorithms informs all

nodes using

Push&Pull-

communication in

log3n + O(log log n)

rounds with probability

1−n−c, using at most

O(n log log n)

messages.

Peer-to-Peer Networks
08 Kelips and Epidemic Algorithms

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

