

Peer-to-Peer Networks 08 Kelips and Epidemic Algorithms

JNI FREIBURG

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg

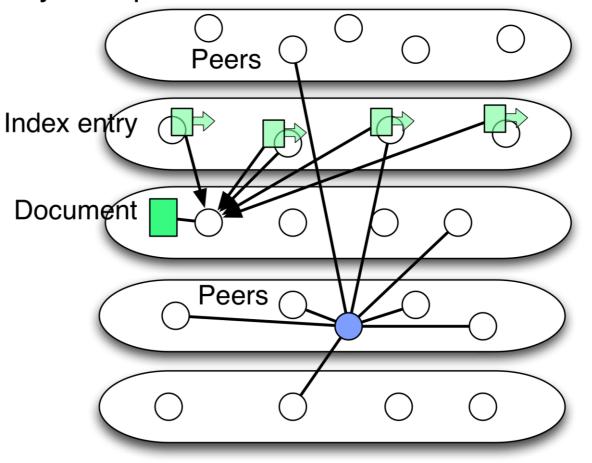
- Indranil Gupta, Ken Birman,
 Prakash Linga, Al Demers,
 Robbert van Renesse
 - Cornell University, Ithaca, New York
- Kelip-kelip
 - malay name for synchronizing fireflies
- P2P Network
 - uses DHT
 - constant lookup time
 - O(n^{1/2}) storage size
 - fast and robust update

Copyrights @ 1998 - 2008 by TourMalaysia

Kelips Overview

- Peers are organized in k affinity groups
 - peer position chosen by DHT mechanism
 - k is chosen as $n^{1/2}$ for n peers
- Data is mapped to an affinity group using DHT
 - all members of an affinity group store all data
- Routing Table
 - each peer knows all members of the affinity group
 - each peer knows at least one member of each affinity group
- Updates
 - are performed by epidemic algorithms

Affinity Groups



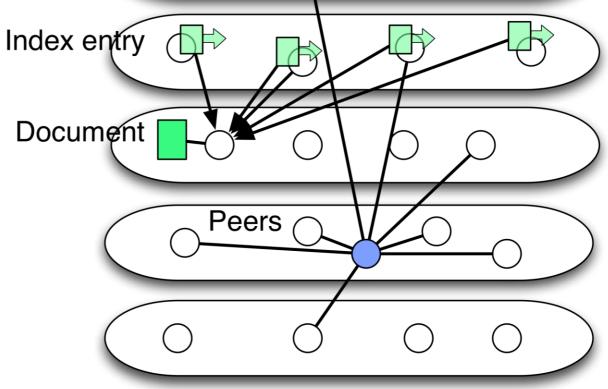
INI

Routing Table

- Affinity Group View
 - Links to all O(n/k) group members
 - This set can be reduced to a partial set as long as the update mechanism works
- Contacts
 - For each of the other affinity group a small (constant-sized) set of nodes
 - O(k) links
- Filetuples
 - A (partial) set of tuples, each detailing a file name and host IP address of the node storing the file
 - O(F/k) entries, if F is the overall number of files
- Memory Usage: O(n/k + k + F/k)

- for $\mathbf{k} = \mathcal{O}(\sqrt{n+F})$

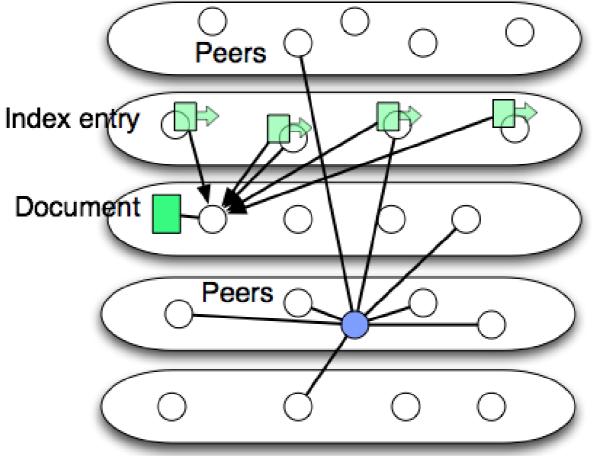
Affinity Groups



 $O(\sqrt{n+F})$

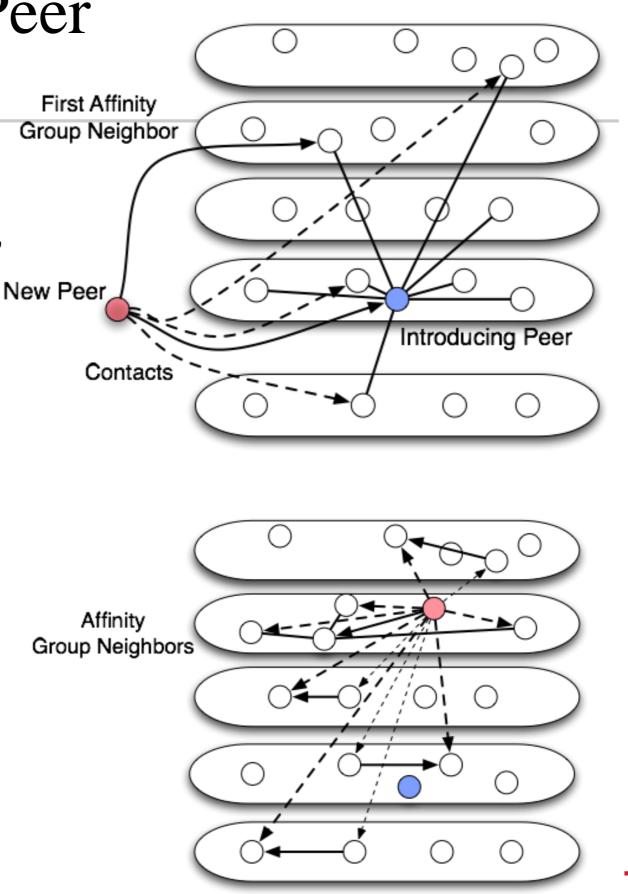
JNI Reiburg

- Lookup-Algorithm
 - compute index value
 - find affinity group using hash function
 - contact peer from affinity group
 - receive index entry for file (if it exists)
 - contact peer with the document
- Kelips needs four hops to retrieve a file



Inserting a Peer

- Algorithm
 - Every new peer is introduced by a special peer, group or other method,
 - e.g. web-page, forum etc.
 - The new peer computes its affinity group and contacts any peer
 - The new peer asks for one contact of the affinity group and copies the contacts of the old affinity group
 - By contacting a neighbor node in the affinity group it receives all the necessary contacts and index filetuples
 - Every contact is replaced by a random replacement (suggested by the contact peer)
 - The peer starts an epidemic algorithm to update all links
- Except the epidemic algorithm the runtime is O(k) and only O(k) messages are exchanged



How to Add a Document

- Start an Epidemic Algorithm to Spread the news in the affinity group
- Such an algorithm uses O(n/k) messages and needs O(log n) time
- We introduce Epidemic Algorithms later on

How to Check Errors

- Kelip works in heartbeats, i.e. discrete timing
- In every heartbeat each peer checks one neighbor
- If a neighbor does not answer for some time
 - it is declared to be dead
 - this information is spread by an epidemic algorithm
- Using the heartbeat mechanisms all nodes also refresh their neighbors
- Kelips quickly detects missing nodes and updates this information

- Kelips has lookup time O(1), but needs O(n^{1/2}) sized Routing Table
 - not counting the $O(F/n^{1/2})$ file tuples
- Chord, Pastry & Tapestry use lookup time O(log n) but only O(log n) memory units
- Kelips is a reasonable choice for medium sized networks
 - up to some million peers and some hundred thousands index entries

What is an Epidemic Algorithm

Epidemic Spread of Viruses

- Observation
 - most viruses do not prosper in real life
 - other viruses are very successful and spread fast
- How fast do viruses spread?
- How many individuals of the population are infected?
- Problem
 - social behavior and infection risk determine the spread
 - the reaction of a society to a virus changes the epidemy
 - viruses and individuals may change during the infection

Mathematical Models

- SI-Model (rumor spreading)
 - susceptible \rightarrow infected
- SIS-Model (birthrate/deathrate)
 - susceptible \rightarrow infected \rightarrow susceptible
- SIR-Model
 - susceptible \rightarrow infected \rightarrow recovered
- Continuous models
 - deterministic
 - or stochastic
- Lead to differential equations
- Discrete Models
 - graph based models
 - random call based
- Lead to the analysis of Markov Processes

JNI REIBURG

Infection Models

- SI-Model (rumor spreading)
 - susceptible \rightarrow infected
 - At the beginning one individual is infected
 - Every contact infects another indiviual
 - In every time unit there are in the expectation ß contacts
- SIS-Model (birthrate/deathrate)
 - susceptible \rightarrow infected \rightarrow susceptible
 - similar as in the SI-Model, yet a share of δ of all infected individuals is healed and can receive the virus again
 - with probability $\boldsymbol{\delta}$ an individual is susceptible again
- SIR-Model
 - susceptible \rightarrow infected \rightarrow recovered
 - like SI-Model, but healed individuals remain immune against the virus and do not transmit the virus again

- Variables
 - n: total number of individuals
 - remains constant
 - S(t): number of (healthy) susceptible individuals at time t
 - I(t): number of infected individuals
- Relative shares
 - s(t) := S(t)/n
 - i(t) := I(t)/n
- At every time unit each individual contacts ß partners
- Assumptions:
 - Among ß contact partnres ß s(t) are susceptible
 - All I(t) infected individuals infect ß s(t) I(t) other individuals in each round
- Leads to the following recursive equations:
 - I(t+1) = I(t) + B S(t) I(t)
 - $-i(t+1) = i(t) + \beta i(t) s(t)$
 - S(t+1) = S(t) B S(t) I(t)
 - $s(t+1) = s(t) \beta i(t) s(t)$

SI-Model CoNe Freiburg

- $i(t+1) = i(t) + \beta i(t) s(t)$
- $s(t+1) = s(t) \beta i(t) s(t)$

Idea:

- i(t) is a continuous function
- i(t+1)-i(t) approximate first derivative

$$\frac{i(t+1) - i(t)}{1} \approx \frac{di(t)}{dt}$$
$$\frac{di(t)}{dt} = \beta \cdot i(t)(1 - i(t))$$

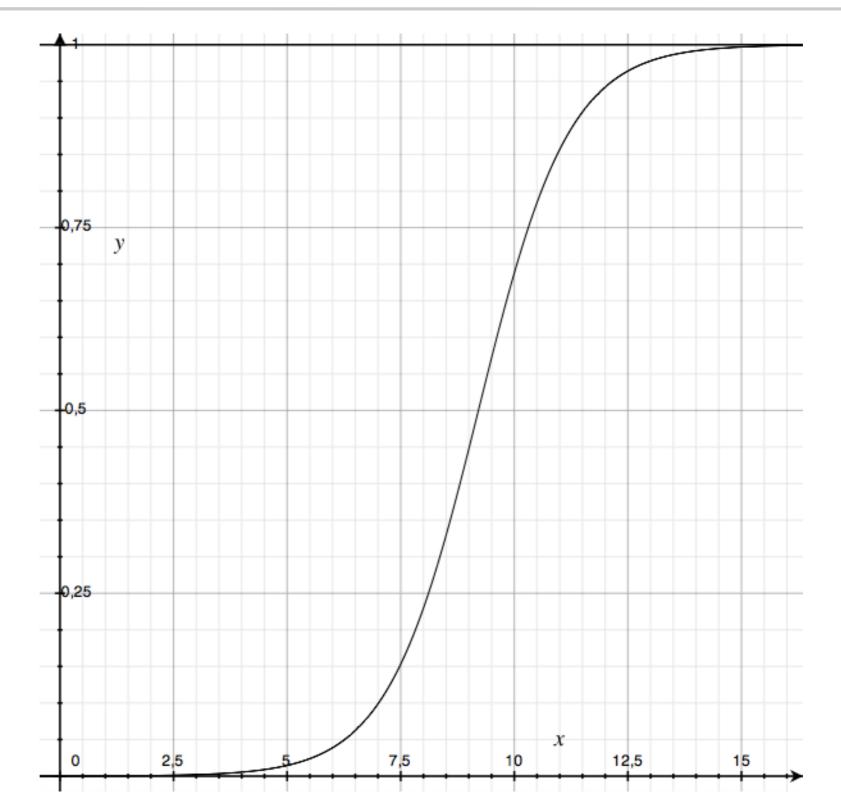
Solution:

$$i(t) = \frac{1}{1 + \left(\frac{1}{i(0)} - 1\right)e^{-\beta t}}$$

REIBURG

SI-Model CoNe Freiburg

- The number of infected grows exponentially until half of all members are infected
- Then the number of susceptible decrease exponentially



- Variables
 - n: total number of individuals
 - remains constant
 - S(t): number of (healthy) susceptible individuals at time t
 - I(t): number of infected individuals
- Relative shares
 - s(t) := S(t)/n
 - -i(t) := I(t)/n
- At every time unit each individual contacts ß partners

- Assumptions:
 - Among ß contact partners ß s(t) are susceptible
 - All I(t) infected individuals infect ß s(t) I(t) other individuals in each round
 - A share of δ of all infected individuals is susceptible again
- Leads to the following recursive equations:
 - $-I(t+1) = I(t) + ISi(t)S(t) \delta I(t)$
 - $-i(t+1) = i(t) + \beta i(t) s(t) \delta i(t)$
 - $S(t+1) = S(t) \beta i(t) S(t) + \delta I(t)$
 - $s(t+1) = s(t) \beta i(t) s(t) + \delta i(t)$

SI-Model CoNe Freiburg

- $i(t+1) = i(t) + \beta i(t) s(t) \delta i(t)$
- $s(t+1) = s(t) \beta i(t) s(t) + \delta i(t)$
- Idea:
 - i(t) is a continuous function
 - i(t+1)-i(t) approximate first derivative

$$\frac{i(t+1) - i(t)}{1} \approx \frac{di(t)}{dt}$$

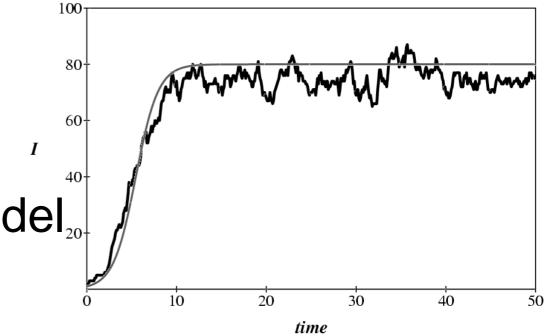
$$\frac{di(t)}{dt} = \beta \cdot i(t)(1 - i(t)) - \delta i(t)$$

- for $\rho = \frac{\delta}{\beta}$ $i(t) = \frac{1-\rho}{1+\left(\frac{1-\rho}{i(0)}-1\right)e^{-(\beta-\delta)t}}$

SIS-Model Interpretation of Solution

$$i(t) = \frac{1-\rho}{1+\left(\frac{1-\rho}{i(0)}-1\right)e^{-(\beta-\delta)t}}$$
If $\beta < \delta$

- 11 13 > 0
 - then i(t) is strictly decreasing
- If ß > δ
 - then i(t) converges against $1 - \rho = 1 - \delta/\beta$
- Same behavior in discrete model₂₀ has been observed
 - [Kephart,White'94]



- Variables
 - n: total number of individuals
 - remains constant
 - S(t): number of (healthy) susceptible individuals at time t
 - I(t): number of infected individuals
 - R(t): number or recovered individ.
- Relative shares
 - -s(t) := S(t)/n
 - -i(t) := I(t)/n
 - -r(t) := R(t)/n
- At every time unit each individual contacts ß partners

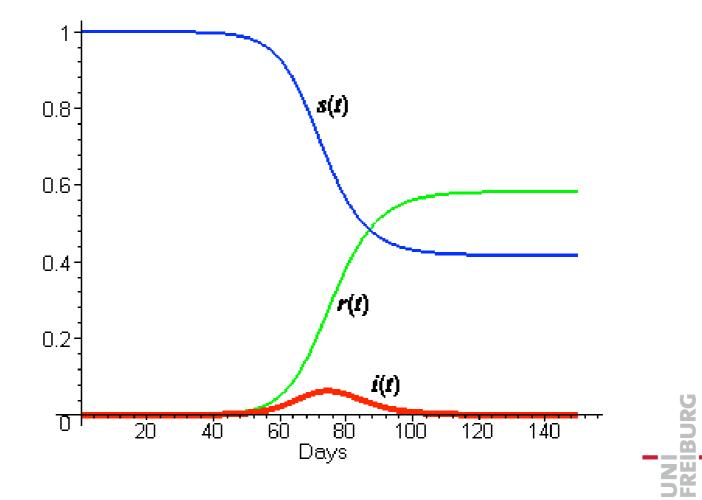
- Assumptions:
 - Among ß contact partners ß s(t) are susceptible
 - All I(t) infected individuals infect $\beta s(t) I(t)$ other individuals in each round
 - A share of δ of all infected individuals is immune (recovered) and never infected again
- Leads to the following recursive equations:

$$- I(t+1) = I(t) + \beta i(t) S(t) - \delta I(t)
- i(t+1) = i(t) + \beta i(t) i(t) - \delta i(t)
- S(t+1) = S(t) - \beta i(t) S(t)
- s(t+1) = s(t) - \beta i(t) s(t)
- R(t+1) = R(t) + \delta I(t)
- r(t+1) = r(t) + \delta i(t)$$

SIR-Model CoNe Freiburg

- The equations and its differential equations counterpart
 - $-i(t+1) = i(t) + \beta i(t) i(t) \delta i(t)$
 - $s(t+1) = s(t) \beta i(t) s(t)$
 - $r(t+1) = r(t) + \delta i(t)$
- No closed solution known
 - hence numeric solution
- Example
 - s(0) = 1
 - i(0) = 1.27 10⁻⁶
 - r(0) = 0
 - ß = 0.5
 - δ = 0.3333

$$\frac{ds(t)}{dt} = -\beta \cdot i(t)s(t)$$
$$\frac{di(t)}{dt} = \beta \cdot i(t)s(t) - \delta i(t)$$
$$\frac{dr(t)}{dt} = -\delta i(t)$$



Replicated Databases

- Same data storage at all locations
 - new entries appear locally
- Data must be kept consistently
- Algorithm is supposed to be decentral and robust
 - since connections and hosts are unreliable
- Not all databases are known to all
- Solutions
 - Unicast
 - New information is sent to all data servers
 - Problem:
 - not all data servers are known and can be reached
 - Anti-Entropy
 - Every local data server contacts another one and exchanges all information
 - total consistency check of all data
 - Problem
 - comunication overhead
- Epicast ...

Epidemic Algorithms

- Epicast
 - new information is a rumor
 - as long the rumor is new it is distributed
 - Is the rumor old, it is known to all servers
- Epidemic Algorithm [Demers et al 87]
 - distributes information like a virus
 - robust alternative to BFS or flooding
- Communication method
 - Push & Pull, d.h. infection after log₃ n + O(log log n) rounds with high probability
- Problem:
 - growing number of infections increases comunication effort
 - trade-off between robustness and communication overhead

SI-Model for Graphs

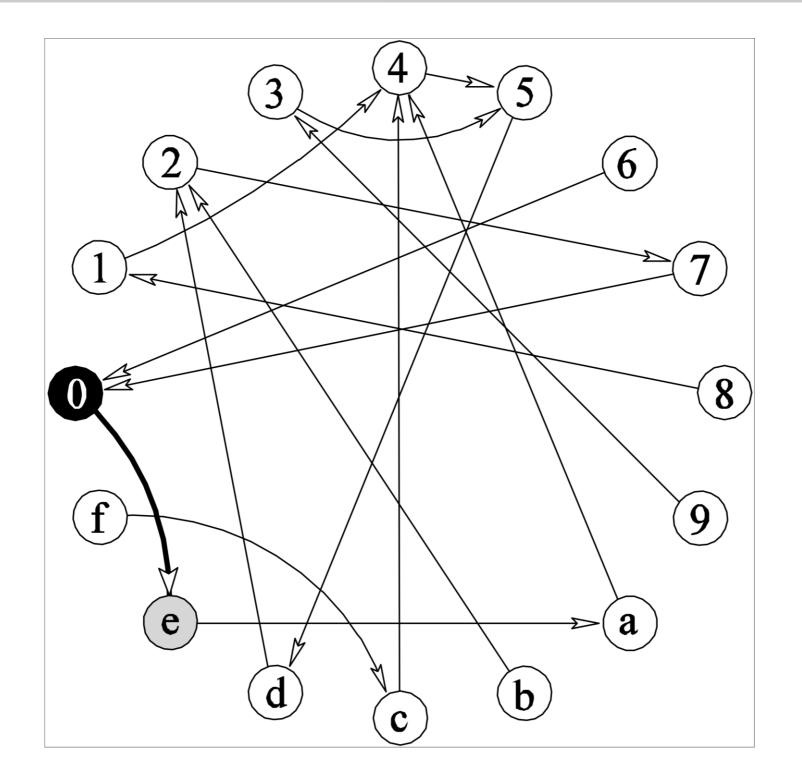
- Given a contact graph G=(V,E)
 - n: number of nodes
 - I(t) := number of infected nodes in round t
 - i(t) = I(T)/n
 - S(t) := number of susceptible nodes in round t
 - I(t)+S(t)=n
 - s(t) = S(T)/n
- Infection:
 - If u is infected in round t and $(u,v) \in E$, then v is infected in round t+1
- Graph determines epidemics
- Complete graph:
 - 1 time unit until complete infection
- Line graph
 - n-1 time units until complete infection

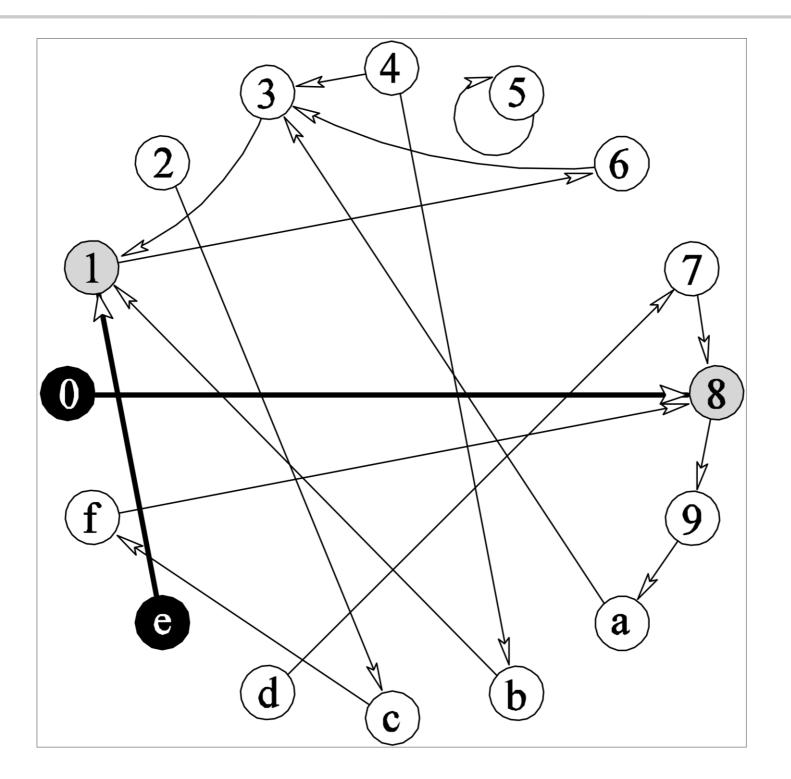
Epidemics in Static Random Graphs

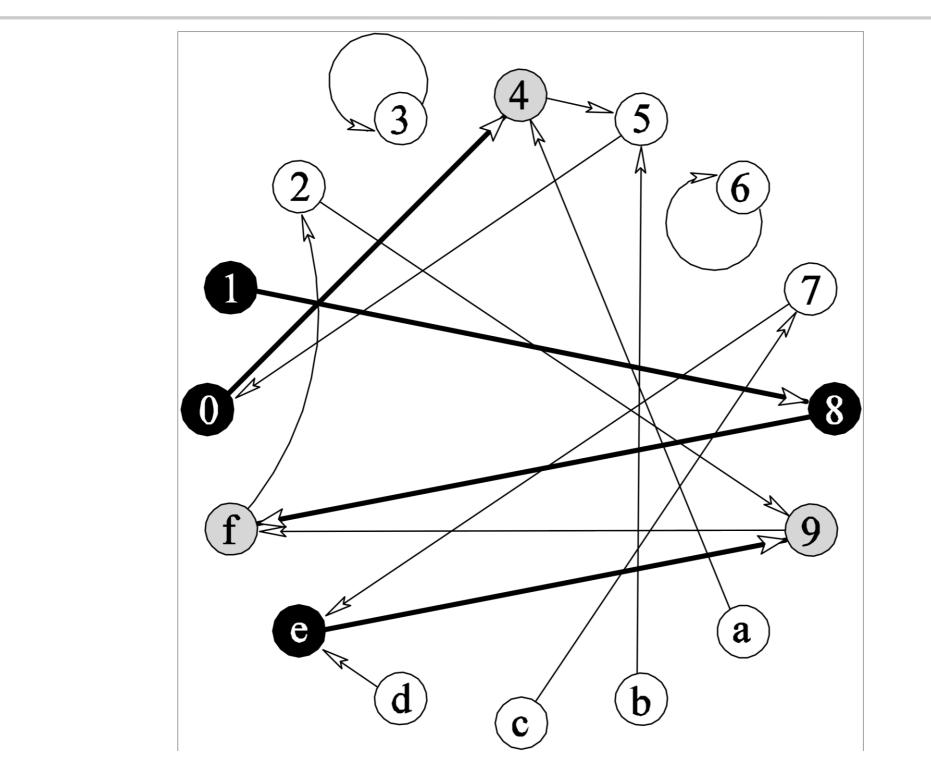
- Random graph G_{n,p}
 - n nodes
 - Each directed edge occurs with independent probability p
- Expected indegre γ = p (n-1)
- How fast does an epidemic spread in $G_{n,p}$, if $\gamma \in O(1)$?
- Observation f
 ür n>2:
 - With probability $\geq 4^{-\gamma} ~~and \leq e^{-\gamma}$
 - a node has in-degree 0 and cannot be infected
 - a node has out-degree 0, and cannot infect others
- Implications:
 - Random (static) graph is not a suitable graph for epidemics

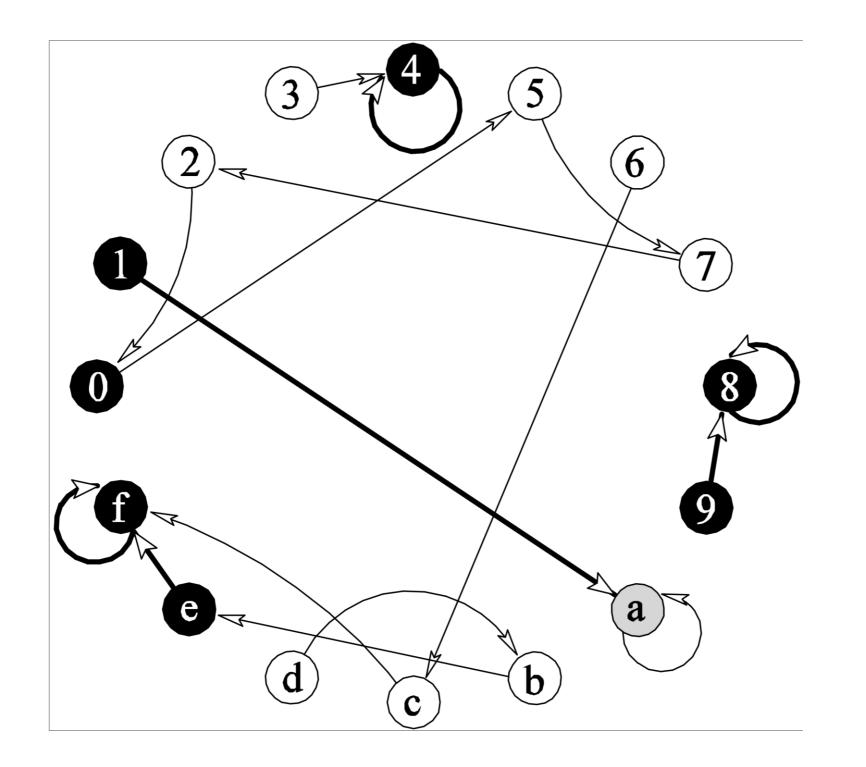
Random Call Model

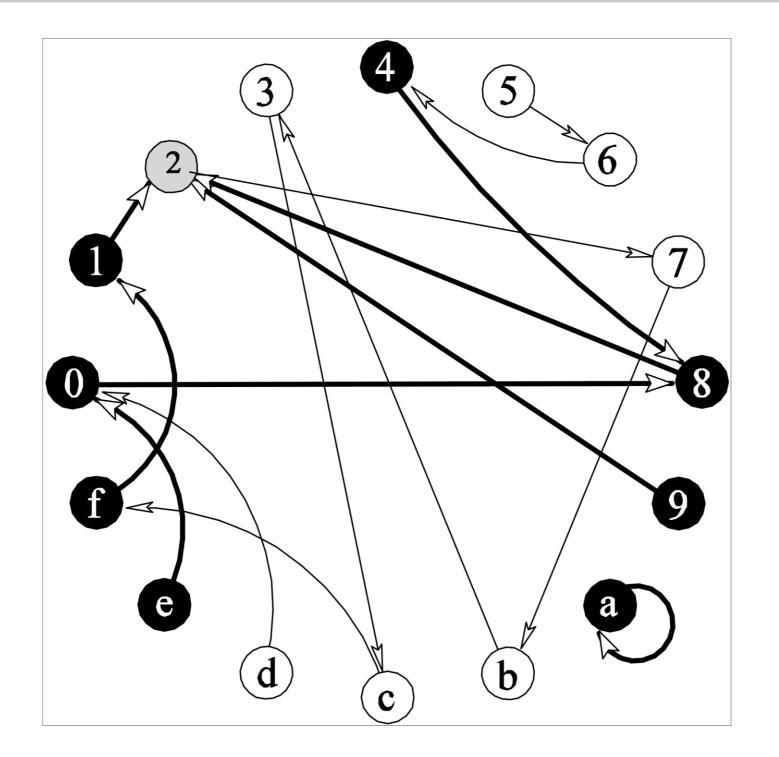
- In each round a new contact graph G_t=(V,E_t):
 - Each node in Gt has out-degree 1
 - chooses random node v out of V
- Infection models:
 - Push-Model
 - if u is infected and (u,v) ∈ E_t, then v is infected in the next round
 - Pull-Modell:
 - if v is infected and (u,v) ∈ E_t, then u is infected in the next round

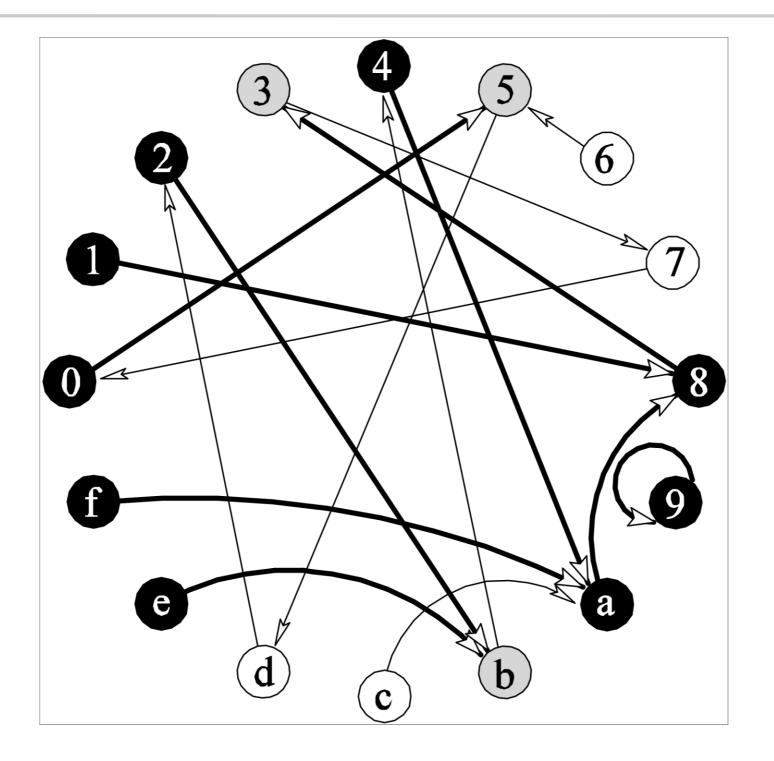


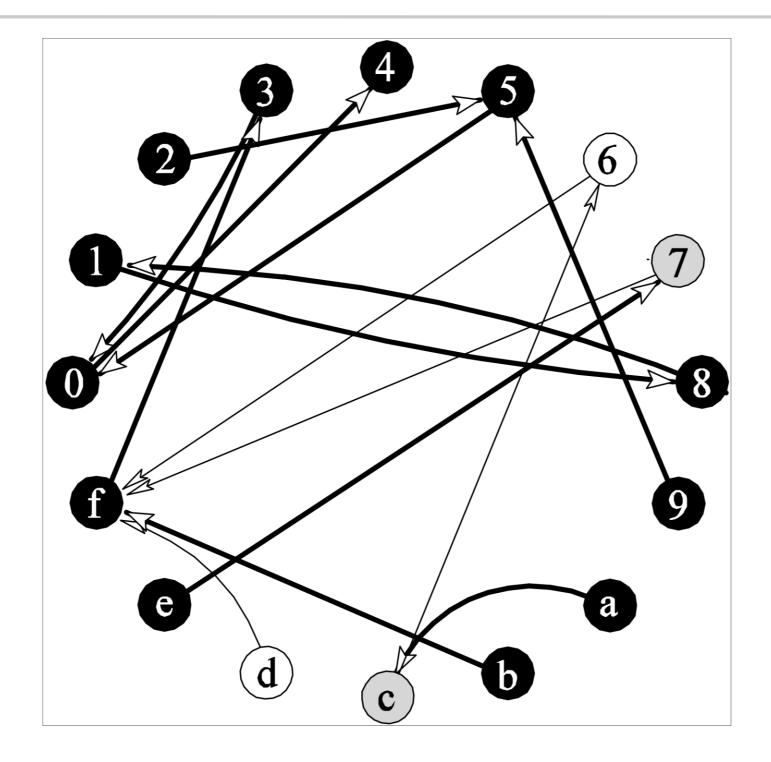


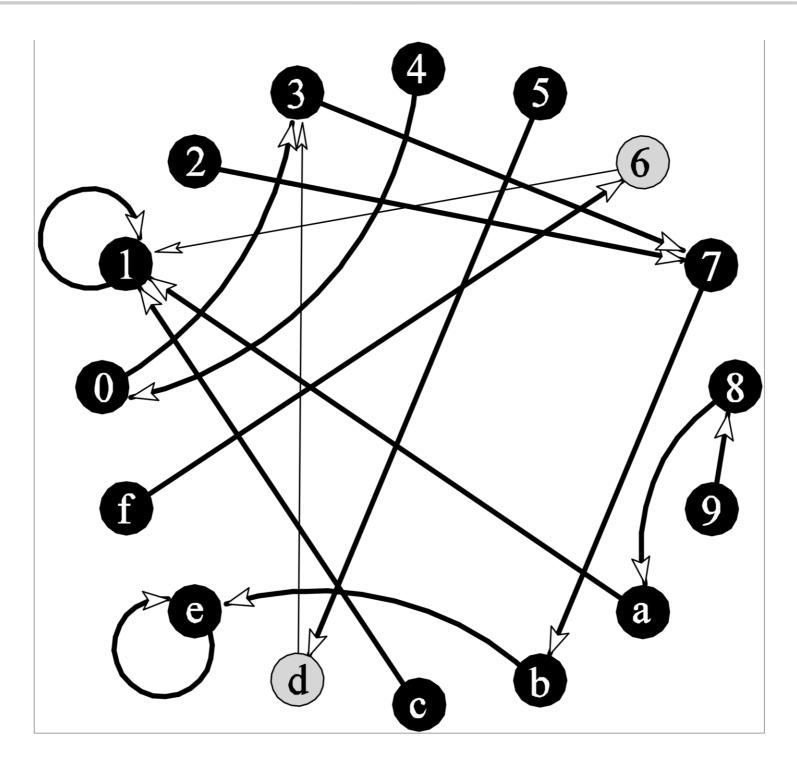












- 3 cases for an infected node
 - 1. it is the only one infecting a new node
 - 2. it contacts an already infected node
 - 3. it infects together with other infected nodes a new node
 - this case is neglected in the prior deterministic case
 - Probability for 1st or 3rd case s(t) = 1-i(t)
 - Probability for 2nd case i(t)
 - Probability for 3rd case is at most i(t)
 - since at most i(t) are infected
- Probability of infection of a new node, if $i(t) \le s(t)/2$:
 - at least 1 2i(t)
- $= \mathsf{E}[\mathsf{i}(\mathsf{t}+1)] \ge \mathsf{i}(\mathsf{t}) + \mathsf{i}(\mathsf{t})(1-2\mathsf{i}(\mathsf{t})) = 2\mathsf{i}(\mathsf{t}) 2\mathsf{i}(\mathsf{t})^2 \approx 2\mathsf{i}(\mathsf{t})$

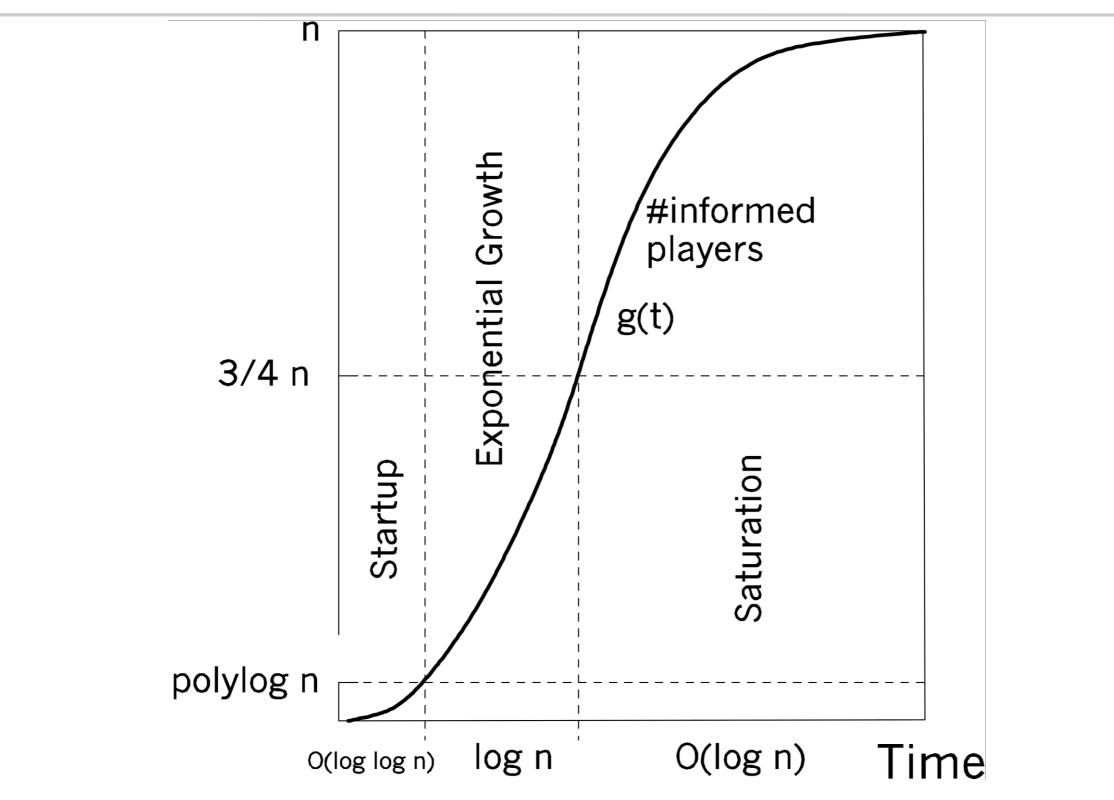
- If $i(t) \le s(t)/2$:
 - E[i(t+1)] ≥ 2 i(t) 2i(t)2 ≈ 2 i(t)
- Start phase: I(t) ≤ 2 c (ln n)²
 - Variance of i(t+1) relatively large
 - Exponential growth starts after some O(1) with high probability
- Exponential growth:
 I(t) ∈ [2 c (ln n)², n/(log n)]
 - Nearly doubling of infecting nodes with high probability, i.e. 1-O(n^{-c})
- Proof by Chernoff-Bounds
 - For independent random variables X_i $\in \{0,1\}$ with $X_m = \sum_{i=1}^m X_i$
 - and any $0 \le \delta \le 1$
 - Let ™= 1/(ln n)

$$\mathbf{P}[X_m \le (1-\delta)\mathbf{E}[X_m]] \le e^{-\delta^2 \mathbf{E}[X_m]/2}$$

- **E**[X_m] ε 2 c (ln n)³
- Then ^{™2} **E**[X_m] /2 ε c ln n
- This implies $\mathbf{P}[X_m \le (1-\delta)\mathbf{E}[X_m]] \le e^{-\delta^2 \mathbf{E}[X_m]/2} \le n^{-c}$

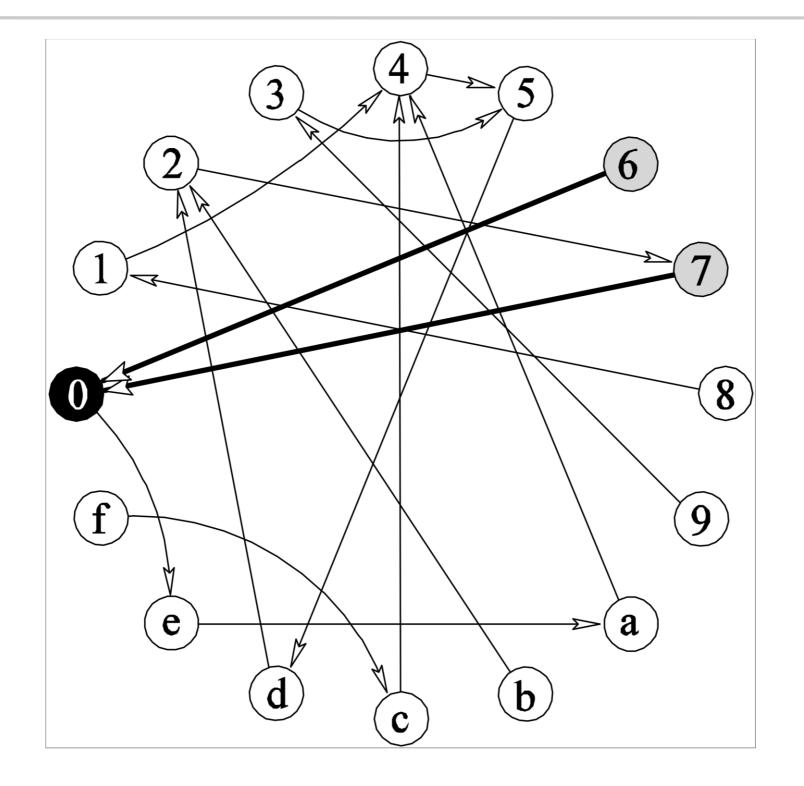
- Probability of infections of a new node if $i(t) \delta s(t)/2$: 1 2i(t)
 - E[i(t+1)] ε 2 i(t) 2i(t)² Η 2 i(t)
- Middle phase I(t) [n/(log n), n/3]
 - term 2i(t)² ε 2i(t)/(log n) cannot be neglected anymore
 - Yet, $2i(t) 2i(t)^2 \epsilon 4/3 i(t)$ still implies expontential growth, but with base < 2
- Saturation: I(t) ε n/3
 - Probability that a susceptible node is not contacted by I(t) = c ninfected nodes:
 - This implies a constant probability for infection ϵ **1 e**^{-1/3} und δ **1 e**⁻ 1
 - Hence **E**[s(t+1)] δ e^{-i(t)} s(t) δ e^{-1/3} s(t)
 - Chernoff-bounds imply that this holds with high probability
 - Exponential shrinking of susceptible nodes $\begin{pmatrix} 1-\frac{1}{n} \end{pmatrix}^n$ Base converges to 1/e
 - Base converges to 1/e

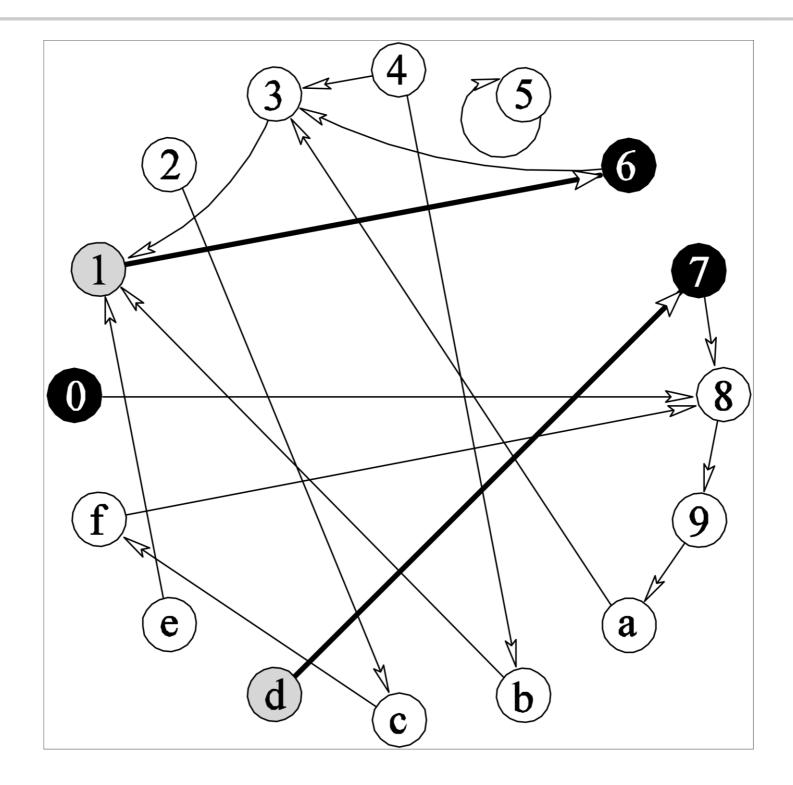
$$\binom{n}{c} \leq \frac{1}{c}$$

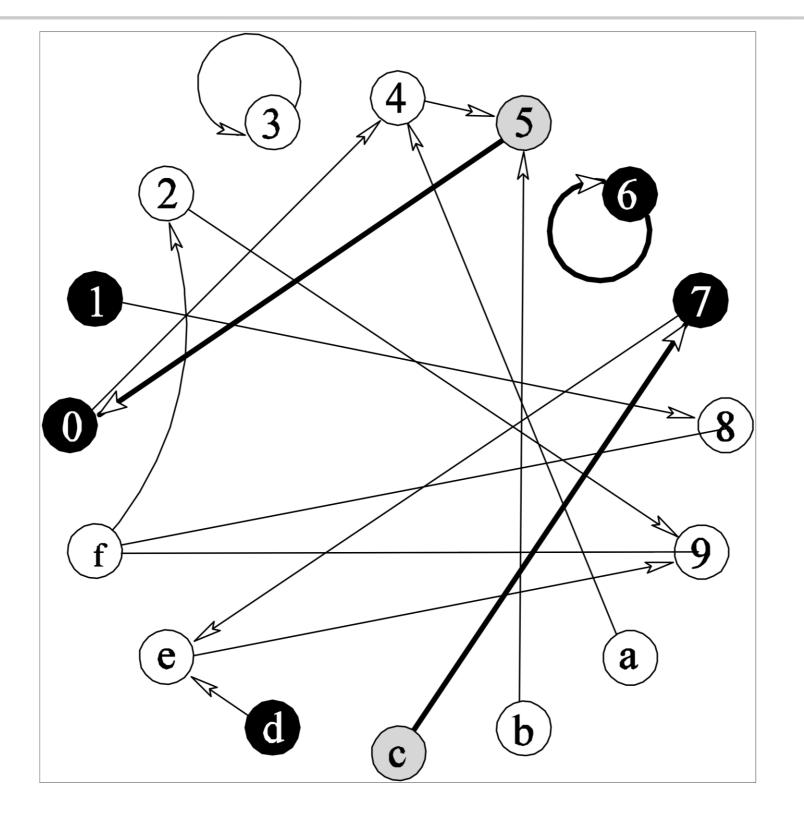


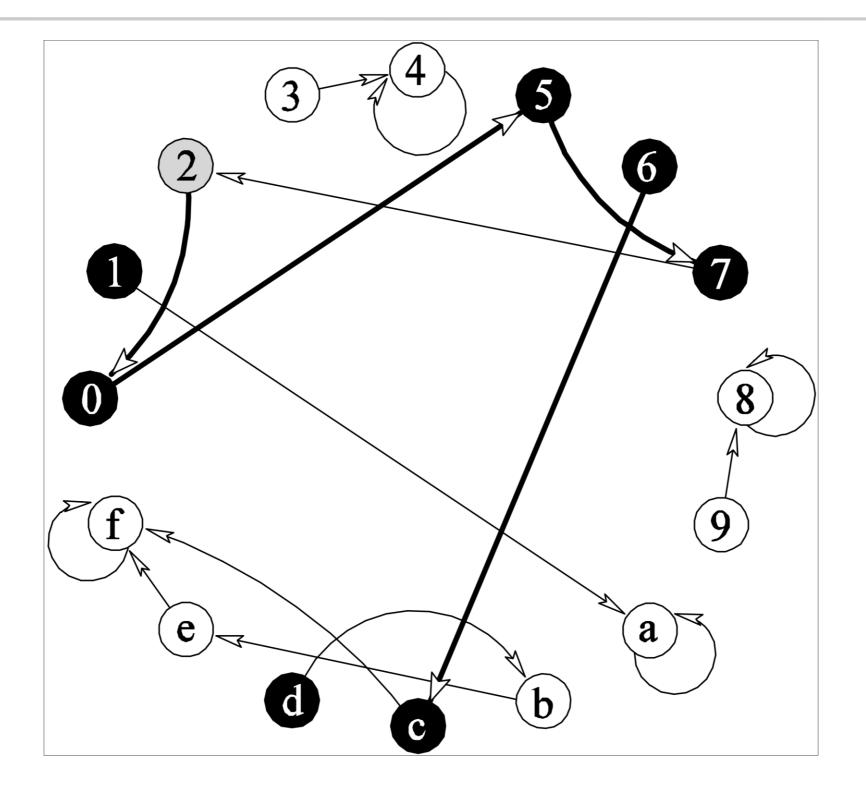
Random Call Model

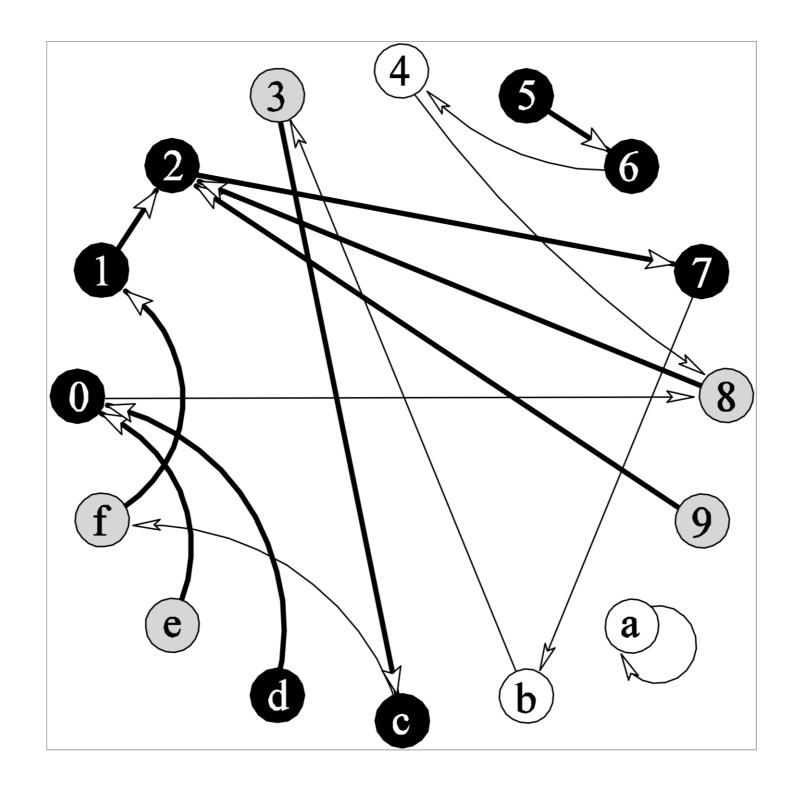
- Infection models:
 - Push Model
 - if u is infected and (u,v) ∈ E_t, then v is infected in the next round
 - Pull Model
 - if v is infected and $(u,v) \in E_t,$ then u is infected in the next round

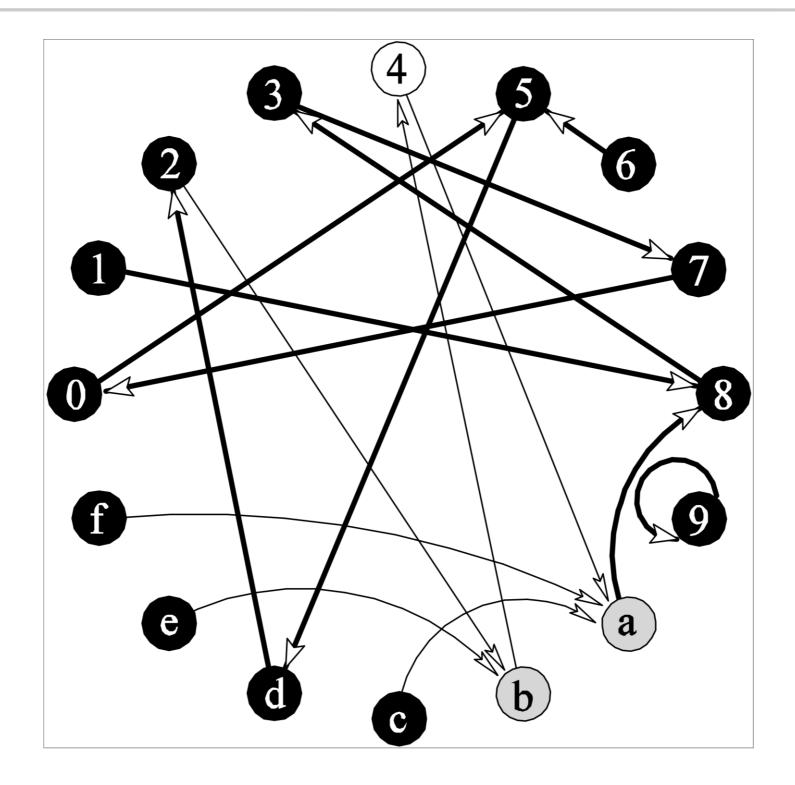












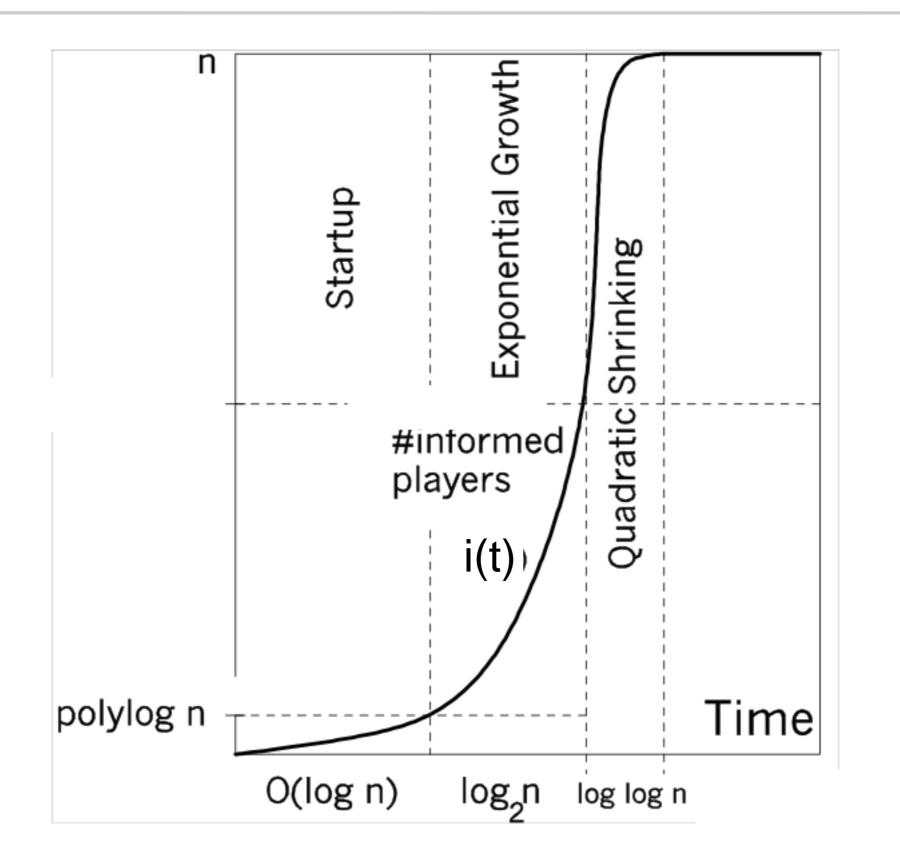
- Consider
 - an susceptible node and I(t) infected nodes
- Probability that a susceptible node contacts an infected node: i(t)

$$- E[s(t+1)] = s(t) - s(t) i(t) = s(t) (1 - i(t)) = s(t)^{2}$$

$$- E[i(t+1)] = 1 - s(t)^{2} = 1 - (1 - i(t))^{2} = 2 i(t) - i(t)^{2} \approx 2 i(t)$$

$$- for small i(t)$$

- Problem
 - if $i(t) \leq (\log n)^2$ then exponential growth is not with high probability
 - O(log n) steps are needed to start eh growth with high probability
 - yet in the expectation it grows exponentially
- After this phase
 - If $s(t) \leq \frac{1}{2}$
 - then the share of susceptible nodes is squared in each step
 - This implies $E[s(t+O(\log \log n))] = 0$,
 - If i(t) ≥ ½ then after O(log log n) steps all nodes are infected with high probability

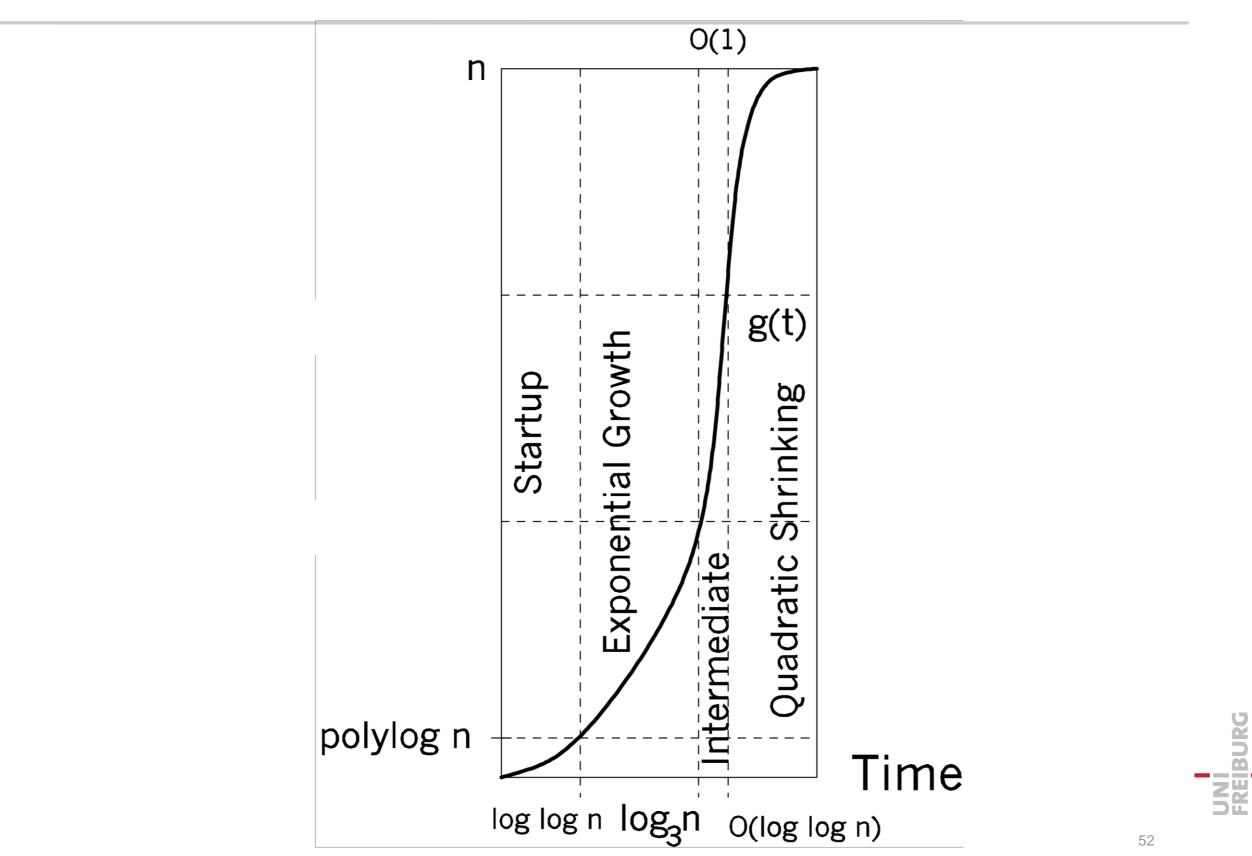


Push&Pull Model

- Combines growth of Push and Pull
- Start phase: $i(t) \le 2 c (\ln n)^2$
 - Push causes doubling of i(t) after O(1) rounds with high probability
- Exponential growth:
 I(t) ∈ [2 c (ln n)2, n/(log n)]
 - Push and Pull nearly triple in each round with high probability:
 - i(t+1) ≥ 3 (1-1/(log n)) i(t)
- Middle phase: $I(t) \in [n/(\log n), n/3]$
 - Push and Pull
 - slower exponential growth
- Quadratic shrinking: $I(t) \ge n/3$
 - caused by Pull:
 - $\mathsf{E}[\mathsf{s}(\mathsf{t}\mathsf{+}\mathsf{1})] \leq \mathsf{s}(\mathsf{t})^2$
 - The Chernoff bound implies with high probability
 - $s(t+1) \leq 2 s(t)^2$
 - so after two rounds for $s(t) \le 1/2^{1/2}$
 - $s(t+2) \leq s(t)^2 w.h.p.$

INI

Push&Pull Model



Max-Counter Algorithm

- Simple termination strategy
 - If the rumor is older than max_{ctr} , then stop transmission
- Advantages
 - simple
- Disadvantage
 - Choice of maxctr is critical
 - If max_{ctr} is too small then not all nodes are informed
 - If max_{ctr} is too large, then the message overhead is $\Omega(n\ max_{ctr})$
- Optimal choice for push-communication
 - $max_{ctr} = O(log n)$
 - Number of messages: O(n log n)
- Pull communication
 - $max_{ctr} = O(log n)$
 - Number of messages: O(n log n)
- Push&Pull communication
 - $max_{ctr} = log_3n + O(log log n)$
 - Number of messages: O(n log log n)

Shenker's Min-Counter Algorithm

- Only is the rumor is seen as old then contact partners increase the agecounter
- Shenkers Min-Counter-Algorithmus für max_{ctr} = O(log log n)
 - Every player P stores age-variable $\operatorname{ctr}_R(\mathsf{P})$ for each rumor R
 - A: player P does not know the rumor:

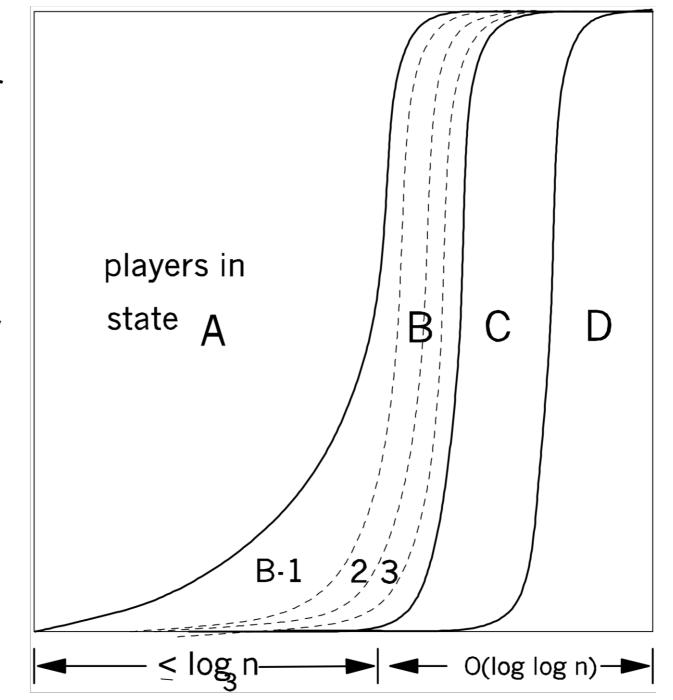
• ctr_R(P) ← **1**

- B: If player P sees rumor for the first time
 - ctr_R(P) ← 1
- B: If partners Q_1, Q_2, \ldots, Q_m communicate with P in a round
- If $min_i \{ ctr_R(Q_i) \} \ge ctr_R(P)$ then
 - $ctr_R(P) \leftarrow ctr_R(P) + 1$
- C: If $ctr_R(P) \ge max_{ctr}$ then
 - tell the rumor for max_{ctr} more rounds
 - then D: stop sending the rumor
- Theorem
 - Shenkers Min-Counter algorithms informs all nodes using Push&Pull-communication in log₃n + O(log log n) rounds with probability 1-n^{-c}, using at most O(n log log n) messages.

Shenker's Min-Counter-Algorithm

Theorem

 Shenkers Min-Counter algorithms informs all nodes using Push&Pullcommunication in log₃n + O(log log n) rounds with probability 1-n^{-c}, using at most O(n log log n) messages.



Peer-to-Peer Networks 08 Kelips and Epidemic Algorithms

JNI FREIBURG

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg