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Peer-to-Peer Networking Facts

 Hostile environment

- Legal situation

- Egoistic users

- Networking

• ISP filter Peer-to-Peer Networking traffic

• User arrive and leave

• Several kinds of attacks

• Local system administrators fight peer-to-peer networks

 Implication

- Use stable robust network structure as a backbone

- Napster: star

- CAN: lattice

- Chord, Pastry, Tapestry: ring + pointers for lookup

- Gnutella, FastTrack: chaotic “social” network

 Idea: Use a Random d-regular Network



Why Random Networks ?

 Random Graphs ...

- Robustness

- Simplicity

- Connectivity

- Diameter

- Graph expander

- Security

 Random Graphs in Peer-to-Peer 

networks: 

- Gnutella

- JXTApose
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Dynamic Random Networks ...

 Peer-to-Peer networks are highly dynamic ...

- maintenance operations are needed to preserve 

properties of random graphs

- which operation can maintain (repair) a random 

digraph?
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Desired properties:

Soundness Operation remains in domain

(preserves connectivity and out-degree)

Generality every graph of the domain is reachable

does not converge to specific small graph set

Feasibility can be implemented in a P2P-network

Convergence Rate probability distribution converges quickly



Simple Switching

 Simple Switching 

- choose two random edges 

• {u1,u2} ∈ E, {u3,u4} ∈ E

- such that {u1,u3}, {u2,u4} ∉ E                                  

• add edges {u1,u3}, {u2,u4} to E 

• remove {u1,u2} and {u3,u4} from E

 McKay, Wormald, 1990

- Simple Switching converges to uniform 

probability distribution of random network

- Convergence speed:

• O(nd3) for d ∈ O(n1/3)

 Simple Switching cannot be used in Peer-

to-Peer networks

- Simple Switching disconnects the graph with 

positive probability

- No network operation can re-connect 

disconnected graphs
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Necessities of Graph Transformation

 Problem: Simple Switching 

does not preserve connectivity

 Soundness

- Graph transformation remains in 

domain

- Map connected d-regular graphs to 

connected d-regular graphs

 Generality

- Works for the complete domain and 

can lead to any possible graph

 Feasibility

- Can be implemented in P2P network

 Convergence Rate

- The probability distribution 

converges quickly

Simple-Switching

Graphs
Undirected 

Graphs

Soundness ?

Generality ☇

Feasibility ✔

Convergence ✔



Directed Random Graphs

 Peter Mahlmann, Christian Schindelhauer

- Distributed Random Digraph Transformations for Peer-

to-Peer Networks, 18th ACM Symposium on Parallelism 

in Algorithms and Architectures, Cambridge, MA, USA. 

July 30 - August 2, 2006

7



Directed Graphs

Push Operation:
1.Choose random node u

2.Set v to u

3.While a random event with p= 1/h appears

a) Choose random edge starting at v and  

ending at v‘

b) Set v to v‘

3.Insert edge (u,v)

4.Remove random edge starting at v

Pull Operation:
1.Choose random node u

2.Set v to u

3.While a random event with p= 1/h appears

a)Choose random edge starting at v and ending at 

v‘

b)Set v to v‘

3.Insert edge (v,u)

4.Remove random edge starting at v‘
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Simulation of Push-Operations

Start situation

Parameter:
n = 32 nodes

out-degree d = 4

Hop-distance h = 3
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1 Iteration Push ...
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10 Iterations Push ...
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20 Iterations von Push ...
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30 Iterations Push ...
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40 Iterations Push ...
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50 Iterations Push ...
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70 Iterations Push ...

Client-Server 

rediscovered
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Simulation of Pull-Operation ...

Start situation

Parameter:
n = 32 nodes

outdegree d = 4

hop distance h = 3
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1 Iteration Pull ...
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10 Iterations Pull ...
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20 Iterations Pull ...
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30 Iterations Pull ...
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40 Iterationen Pull ...
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50 Iterations Pull ...
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500 Iterations Pull ...
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5000 Iterations Pull ...
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Combination of Push and Pull

Pull
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Simulation of Push&Pull-Operations ...

Same start situation

Parameters

n = 32 nodes

degree d = 4

hop-distance h = 3

but

1.000.000 iterations
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Pointer-Push&Pull for Multi-Digraphs

Pointer-Push&Pull:
• choose random node v1 ∈ V

• do random walk v1, v2, v3

• delete edges (v1,v2) and (v2,v3)

• add edges (v2,v1) and (v1,v3)

• obviously:

• preserves connectivity of G
• does not change out-degrees

➡ Pointer-Push&Pull is sound for the domain of 

out-regular connected multi-digraphs



Pointer-Push&Pull: Reachability
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Lemma A series of random Pointer-Push&Pull operations can transform an

arbitrary connected out-regular multi-digraph, to every other graph within this

domain



Pointer-Push&Pull: Uniformity
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What is the stationary prob. distribution generated by Pointer-Push&Pull?

• depends on random walk

example: node oriented random walk

- choose random neighboring node with p=1/d respectively

- due to multi-edges possibly less than d neighbors

- if no node was chosen operation is canceled
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Uniform Generality

Theorem: Let G’ be a d-out-regular connected multi-digraph with n nodes.

Applying Pointer-Push&Pull operations repeatedly will construct every d-out-

regular connected multi-digraph with the same probability in the limit, i.e.



Feasibility ...
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A Pointer-Push&Pull operation in the network ...

(2) v2 replaces (v2,v3) by (v2,v1) and sends ID of v3 to v1

• only 2 messages between two 

nodes, carrying the information of 

one edge only

• verification of neighborhood is 

mandatory in dynamic networks

⇒ combine neighbor-

check with Pointer-Push&Pull



Properties of Pointer-Push&Pull
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• strength of Pointer-Push&Pull is its simplicity

• generates truly random digraphs

• the price you have to pay: multi-edges

Open Problems:

• convergence rate is unknown, conjecture 

O(dn log n)

•is there a similar operation for simple digraphs?

Pointer-Push&Pull

Graphs
Directed 

Multigraphs

Soundness ✔

Generality ✔

Feasibility ✔

Convergence ?



hub edge

flipping edges

The 1-Flipper (F1)

 The operation 

- choose random edge {u2,u3} ∈ E,
• hub edge

- choose random node u1 ∈ N(u2) 

• 1st flipping edge

- choose random node u4 ∈ N(u3)

• 2nd flipping edge

- if {u1,u3}, {u2,u4} ∉ E

• flip edges, i.e.

• add edges {u1,u3}, {u2,u4} to E 

• remove {u1,u2} and {u3,u4} from E



 Soundness:

- 1-Flipper preserves d-regularity

• follows from the definition

- 1-Flipper preserves connectivity

• because of the hub edge

 Observation:

- For all d > 2 there is a connected d-regular graph G 

such that

- For all d ≥ 2 and for all d-regular connected graphs at 

least one 1-Flipper-operation changes the graph with 

positive probability

• This does not imply generality

1-Flipper is sound



 Lemma (symmetry):  

- For all undirected regular graphs G,G’:

1-Flipper is symmetric



1-Flipper provides generality

 Lemma (reachability): 

- For all pairs G,G’ of connected d-regular graphs there 

exists a sequence of 1-Flipper operations transforming 

G into G’.



 Theorem (uniformity): 

- Let G0 be a d-regular connected graph with n nodes and 

d > 2. Then in the limit the 1-Flipper operation 

constructs all connected d-regular graphs with the same 

probability:

1-Flipper properties: uniformity



1-Flipper properties: Expansion

 Definition (edge boundary): 

- The edge boundary δS of a set S ⊂ V is the set of edges with exactly one 

endpoint in S.

 Definition (expansion):  

A graph G=(V,E) has expansion β > 0 

- if for all node sets S with |S| ≤ |V|/2:

- |δS| ≥ β |S|

 Since for d ∈ ω(1) a random connected d-regular graph is a 

θ(d) expander asymptotically almost surely (a.a.s: in the limit 

with probability 1), we have

 Theorem: 

- For d > 2 consider any d-regular connected Graph G0. Then in the limit the 

1-Flipper operation establishes an expander graph after a sufficiently large 

number of applications a.a.s.



Flipper
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‣ Flipper involves 4 nodes

‣ Generates truly random 

graphs

‣ Open Problems:

• convergence rate is polynomial

•conjecture: O(dn log n)

Flipper

Graphs
Undirected 

Graphs

Soundness ✔

Generality ✔

Feasibility ✔

Convergence ?



The k-Flipper (Fk)

 The operation 

- choose random node

- random walk P‘ in G

- choose hub path with nodes

- {ul, ur}, {ul+1 ,ur+1} occur only once in P’

- if {ul, ur}, {ul+1 ,ur+1} ∉ E

- add edges {ul, ur}, {ul+1,ur+1} to E 

- remove {ul,ul+1} and {ur,ur+1} from E

hub path

flipping edges



k-Flipper: Properties ...

 k-Flipper preserves connectivity and d-regularity

- proof analogously to the 1-Flipper

 k-Flipper provides reachable,

- since the 1-Flipper provides reachability

- k-Flipper can emulate 1-Flipper

 But: k-Flipper is not symmetric:

- a new proof for expansion property is needed



Concurrency ...

 In a P2P-network there 

are concurrent Flipper 

operations

- No central coordination

- Concurrent Flipper 

operations can speed up 

the convergence process

- However concurrent 

Flipper operations can 

disconnect the network



k-Flipper

 Convergence only proven for too long 

paths

- Operation is not feasible then.

- Does k-Flipper quickly converge 

for small k?

 Open problem:

- Which k is optimal?
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k-Flipper large 

k

k-Flipper small 

k

Graphs
Undirected 

Graphs

Undirected 

Graphs

Soundness ✔ ✔

Generality ✔ ✔

Feasibility ☇ ✔

Convergen

ce ✔ ?
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All Graph Transformation

‣ Open Problems

• Conjecture: Flipper converges in 

after O(dn log n) operations to a 

truly random graph

• Conjecture: k-Flipper converges 

faster, but involves more nodes 

and flags

• Conjecture: k-Flipper does not 

pay out

‣ Empirical Simulations

• Estimate expansion by 

eingenvalue gap

• Estimate eigenvalue gap by 

iterated multiplication of a start 

vector

Simple-

Switching
Flipper

Pointer-

Push&Pull

k-

Flipper s

mall k

k-

Flipper lar

ge k

Graphs
Undirected 

Graphs

Undirected 

Graphs

Directed 

Multigraphs

Undirected 

Graphs

Undirected 

Graphs

Soundnes

s ? ✔ ✔ ✔ ✔

Generality ☇ ✔ ✔ ✔ ✔

Feasibility ✔ ✔ ✔ ✔ ☇

Conver-

gence ✔ ? ? ? ✔



 Ring with neighbor 

edges

 Torus

 Ring of cliques

Start Graphs
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Flipper

Influence of the Start Graph
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Development of Expansion
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Development of Expansion
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Expansion, Diameter & Triangles
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k-Flipper

Start Graph: Ring of Cliques
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k-Flipper

Start Graph: Ring of Cliques
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Convergence of Flipper
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Convergence of Flipper

Varying Degree
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All Graph Transformation

Simple-

Switching
Flipper

Pointer-

Push&Pull

k-

Flipper sma

ll k

k-

Flipper larg

e k

Graphs
Undirected 

Graphs

Undirected 

Graphs

Directed 

Multigraphs

Undirected 

Graphs

Undirected 

Graphs

Soundness ? ✔ ✔ ✔ ✔

Generality ☇ ✔ ✔ ✔ ✔

Feasibility ✔ ✔ ✔ ✔ ☇

Convergence ✔ ✔ ? ✔ ✔



Good Peer-to-Peer-Operations

Pull
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