

Peer-to-Peer Networks 09 Random Graphs for Peer-to-Peer-Networks

BURG

REI

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg

Peer-to-Peer Networking Facts

- Hostile environment
 - Legal situation
 - Egoistic users
 - Networking
 - ISP filter Peer-to-Peer Networking traffic
 - User arrive and leave
 - Several kinds of attacks
 - Local system administrators fight peer-to-peer networks
- Implication
 - Use stable robust network structure as a backbone
 - Napster: star
 - CAN: lattice
 - Chord, Pastry, Tapestry: ring + pointers for lookup
 - Gnutella, FastTrack: chaotic "social" network
- Idea: Use a Random d-regular Network

Why Random Networks ?

- Random Graphs ...
 - Robustness
 - Simplicity
 - Connectivity
 - Diameter
 - Graph expander
 - Security

gnutella.com

Random Graphs in Peer-to-Peer networks:

- Gnutella
- JXTApose

Dynamic Random Networks ...

- Peer-to-Peer networks are highly dynamic ...
 - maintenance operations are needed to preserve properties of random graphs
 - which operation can maintain (repair) a random digraph?

Desired properties:

Soundness	Operation remains in domain (preserves connectivity and out-degree)
Generality	every graph of the domain is reachable does not converge to specific small graph set
Feasibility	can be implemented in a P2P-network
Convergence Rate	probability distribution converges quickly

Simple Switching

- Simple Switching
 - choose two random edges
 - $\{u_1, u_2\} \in E, \{u_3, u_4\} \in E$
 - such that {u₁,u₃}, {u₂,u₄} \notin E
 - add edges {u₁,u₃}, {u₂,u₄} to E
 - remove {u₁,u₂} and {u₃,u₄} from E
- McKay, Wormald, 1990
 - Simple Switching converges to uniform probability distribution of random network
 - Convergence speed:
 - $O(nd^3)$ for $d \in O(n^{1/3})$
- Simple Switching cannot be used in Peerto-Peer networks
 - Simple Switching disconnects the graph with positive probability
 - No network operation can re-connect disconnected graphs

INI REIBURG

CoNe Freiburg

Necessities of Graph Transformation

	Simple-Switching
Graphs	Undirected Graphs
Soundness	?
Generality	$\boldsymbol{\zeta}$
Feasibility	\checkmark
Convergence	\checkmark

- Problem: Simple Switching does not preserve connectivity
- Soundness
 - Graph transformation remains in domain
 - Map connected d-regular graphs to connected d-regular graphs
- Generality
 - Works for the complete domain and can lead to any possible graph
- Feasibility
 - Can be implemented in P2P network
- Convergence Rate
 - The probability distribution converges quickly

Directed Random Graphs

- Peter Mahlmann, Christian Schindelhauer
 - Distributed Random Digraph Transformations for Peerto-Peer Networks, 18th ACM Symposium on Parallelism in Algorithms and Architectures, Cambridge, MA, USA. July 30 - August 2, 2006

Directed Graphs

Push Operation:

- 1.Choose random node u
- 2.Set v to u
- 3. While a random event with p = 1/h appears
- a) Choose random edge starting at *v* and ending at *v*
- b) Set v to v'
- 3.Insert edge (*u*,*v*)
- 4.Remove random edge starting at v

Pull Operation:

- 1.Choose random node u
- 2.Set v to u
- 3. While a random event with p = 1/h appears
- a)Choose random edge starting at *v* and ending at *v*⁴
- b)Set v to v'
- 3.Insert edge (v,u)
- 4. Remove random edge starting at v'

Simulation of Push-Operations

1 Iteration Push ... CoNe Freiburg

20 Iterations von Push ...

30 Iterations Push ...

40 Iterations Push ... CoNe Freiburg

50 Iterations Push ...

70 Iterations Push ...

16

BURG

FREI

1 Iteration Pull ... CoNe Freiburg

20 Iterations Pull ...

30 Iterations Pull ...

40 Iterationen Pull ...

Combination of Push and Pull

26

Simulation of Push&Pull-Operations ...

Same start situation

Parameters n = 32 nodes degree d = 4hop-distance h = 3

but 1.000.000 iterations

Pointer-Push&Pull for Multi-Digraphs

- obviously:
 - preserves connectivity of G
 - does not change out-degrees

→ Pointer-Push&Pull is **sound** for the domain of out-regular connected multi-digraphs

Lemma A series of random Pointer-Push&Pull operations can transform an arbitrary connected out-regular multi-digraph, to every other graph within this domain

A Pointer-Push&Pull: Uniformity Freiburg

What is the stationary prob. distribution generated by Pointer-Push&Pull?

depends on random walk

example: node oriented random walk

- choose random neighboring node with *p*=1/*d* respectively
- due to multi-edges possibly less than d neighbors
- if no node was chosen operation is canceled

$$P[G \xrightarrow{\mathcal{PP}} G'] = P[G' \xrightarrow{\mathcal{PP}} G]$$

Uniform Generality CoNe Freiburg

Theorem: Let G' be a d-out-regular connected multi-digraph with n nodes. Applying Pointer-Push&Pull operations repeatedly will construct every d-outregular connected multi-digraph with the same probability in the limit, i.e.

$$\lim_{t \to \infty} P[G' \xrightarrow{t} G] = \frac{1}{|\mathcal{MDG}_{n,d}|}$$

A Pointer-Push&Pull operation in the network ...

- only 2 messages between two nodes, carrying the information of one edge only
- verification of neighborhood is mandatory in dynamic networks

⇒ combine neighborcheck with Pointer-Push&Pull

(2) v_2 replaces (v_2 , v_3) by (v_2 , v_1) and sends ID of v_3 to v_1

UNI

Properties of Pointer-Push&Pull

	Pointer-Push&Pull
Graphs	Directed Multigraphs
Soundness	
Generality	\checkmark
Feasibility	\checkmark
Convergence	?

- strength of Pointer-Push&Pull is its simplicity
- generates truly random digraphs
- the price you have to pay: multi-edges **Open Problems:**
 - convergence rate is unknown, conjecture O(dn log n)

•is there a similar operation for simple digraphs?

The 1-Flipper (F1)

- The operation
 - choose random edge $\{u_2, u_3\} \in E$,
 - hub edge
 - choose random node $u_1 \in N(u_2)$
 - 1st flipping edge
 - choose random node $u_4 \in N(u_3)$
 - 2nd flipping edge
 - if {u₁,u₃}, {u₂,u₄} ∉ E
 - flip edges, i.e.
 - add edges {u₁,u₃}, {u₂,u₄} to E
 - remove {u₁,u₂} and {u₃,u₄} from E

JNI REIBURG

1-Flipper is sound CoNe Freiburg

- Soundness:
 - 1-Flipper preserves d-regularity
 - follows from the definition
 - 1-Flipper preserves connectivity
 - because of the hub edge
- Observation:
 - For all d > 2 there is a connected d-regular graph G such that $G \xrightarrow{F^1} G \neq 0$
 - For all d ≥ 2 and for all d-regular connected graphs at least one 1-Flipper-operation changes the graph with positive probability
 - This does not imply generality

- Lemma (symmetry):
 - For all undirected regular graphs G,G':

1-Flipper provides generality

- Lemma (reachability):
 - For all pairs G,G' of connected d-regular graphs there exists a sequence of 1-Flipper operations transforming G into G'.

1-Flipper properties: uniformity

- Theorem (uniformity):
 - Let G₀ be a d-regular connected graph with n nodes and d > 2. Then in the limit the 1-Flipper operation constructs all connected d-regular graphs with the same probability:

$$\lim_{t \to \infty} P[G_0 \xrightarrow{t} G] = \frac{1}{|\mathcal{C}_{n,d}|}$$

CoNe Freiburg

1-Flipper properties: Expansion

- Definition (edge boundary):
 - The edge boundary δS of a set S ⊂ V is the set of edges with exactly one endpoint in S.
- Definition (expansion):
 A graph G=(V,E) has expansion β > 0
 - if for all node sets S with $|S| \le |V|/2$:
 - $|\delta S| \ge \beta |S|$
- Since for d ∈ ω(1) a random connected d-regular graph is a θ(d) expander asymptotically almost surely (a.a.s: in the limit with probability 1), we have
- Theorem:
 - For d > 2 consider any d-regular connected Graph G0. Then in the limit the 1-Flipper operation establishes an expander graph after a sufficiently large number of applications a.a.s.

	Flipper
Graphs	Undirected Graphs
Soundness	
Generality	
Feasibility	
Convergence	?

- Flipper involves 4 nodes
- Generates truly random graphs
- Open Problems:
 - convergence rate is polynomial
 conjecture: O(dn log n)

The k-Flipper (Fk)

- The operation
 - choose random node
 - random walk P' in G
 - choose hub path with nodes
 - {u_i, u_r }, {u_{i+1}, u_{r+1} } occur only once in P'
 - if {u_{I}, u_{r}}, {u_{I+1}, u_{r+1}} \notin E
 - add edges {u_i, u_r}, {u_{i+1}, u_{r+1}} to E
 - remove $\{u_{l},u_{l+1}\}$ and $\{u_{r},u_{r+1}\}$ from E

k-Flipper: Properties ...

- k-Flipper preserves connectivity and d-regularity
 - proof analogously to the 1-Flipper
- k-Flipper provides reachable,
 - since the 1-Flipper provides reachability
 - k-Flipper can emulate 1-Flipper
- But: k-Flipper is not symmetric:
 - a new proof for expansion property is needed

Concurrency ...

- In a P2P-network there are concurrent Flipper operations
 - No central coordination
 - Concurrent Flipper operations can speed up the convergence process
 - However concurrent
 Flipper operations can disconnect the network

k-Flipper CoNe Freiburg

	k-Flipper large k	k-Flipper small k		
Graphs	Undirected Graphs	Undirected Graphs		
Soundness	\checkmark	\checkmark		
Generality				
Feasibility	Ś	\checkmark		
Convergen ce		?		

- Convergence only proven for too long paths
 - Operation is not feasible then.
 - Does k-Flipper quickly converge for small k?
- Open problem:
 - Which k is optimal?

CoNe Freiburg

All Graph Transformation

	Simple- Switching	Flipper	Pointer- Push&Pull	k- Flipper s mall k	k- Flipper lar ge k
Graphs	Undirected Graphs	Undirected Graphs	Directed Multigraphs	Undirected Graphs	Undirected Graphs
Soundnes s	?	\checkmark	\checkmark	\checkmark	\checkmark
Generality	ζ	\checkmark	\checkmark	\checkmark	\checkmark
Feasibility	\checkmark	\checkmark	\checkmark	\checkmark	ζ
Conver- gence	\checkmark	?	?	?	\checkmark

Open Problems

- Conjecture: Flipper converges in after O(dn log n) operations to a truly random graph
- Conjecture: k-Flipper converges faster, but involves more nodes and flags
- Conjecture: k-Flipper does not pay out
- Empirical Simulations
- Estimate expansion by eingenvalue gap
- Estimate eigenvalue gap by iterated multiplication of a start vector

- Ring with neighbor edges
- Torus
- Ring of cliques
 A state of the state of the

A Flipper **CoNe Freiburg** Influence of the Start Graph

47

Development of Expansion

Development of Expansion

Expansion, Diameter & Triangles

CoNe Freiburg

All Graph Transformation

	Simple- Switching	Flipper	Pointer- Push&Pull	k- Flipper sma II k	k- Flipper larg e k
Graphs	Undirected Graphs	Undirected Graphs	Directed Multigraphs	Undirected Graphs	Undirected Graphs
Soundness	?				
Generality	Ś				
Feasibility	\checkmark		\checkmark	\checkmark	Ś
Convergence			?		

UNI FREIBURG

55

Peer-to-Peer Networks 09 Random Graphs for Peer-to-Peer-Networks

BURG

REI

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg