

Peer-to-Peer Networks 11 Game Theory

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG

- Feldman, Chuang "Overcoming Free-Riding Behavior in Peer-to-Peer Systems", 2005
- Feldman, Lai, Stoica, Chuang, "Robust Incentive Techniques for Peer-to-Peer Networks", 2004
- Shneidman, Parkes, "Rationality and Self-Interest in Peer to Peer Networks"

- Traditional system design
 - assume obedient users
 - follow specific protocol without consideration
 - classes of nodes:
 - correct/obedient
 - faulty
 - fail-stop
 - message dropping
 - Byzantine failure

P2P

- have rational users
- maximize own utility
- may deviate from the protocol

- Gnutella
 - study by Adar & Huberman 2000
 - ~70% of peers provide no files (free-riders)
 - top 1% provide 37% of all files
 - similar patterns in studies of Napster
 - in 2005: 85% of all Gnutella users are free-riders

Selfish Behavior in P2P

- Reasons
 - Psychology of users
 - Lack of central authority
 - Highly dynamic memberships
 - Availability of cheap identities
 - Hidden or untraceable actions
 - Deceitful behavior
- Implications
 - Success of P2P networks must take into account economic behavior of users

Typical Features of Peer to Peer Systems

- Social dilemma
 - defective behavior (not uploading) is rational behavior,
 i.e. maximise the utility
- Asymmetric transactions
 - a peer wants a service
 - another provides this service
- Untraceable defections
 - it is not clear which peer declines a service
- Dynamic population
 - peers change the behavior
 - peers enter and leave the system

Incentives for Cooperation

- Inherent generosity
- Monetary payment schemes
- Reciprocity-based schemes

Inherent Generosity

- Standard model of behavioral economics
 - based on purely self-interest
 - does not explain all behavior of people
- User generosity has a great impact on existing peer-to-peer systems
 - can not be determined analytically

Monetary Payment Schemes

- Golle, Leyton-Brown, Mironov, Lillibridge 2001, "Incentives for Sharing in peer-to-peer Networks"
 - consider free-rider problem in Napster
 - assume selfish behavior
 - if all peers are selfish this leads to the strict Nash equilibrium
 - introduce micro-payment system to overcome this problem
 - encourage positive behavior by virtual money

Basics of Game Theory

 Prisoner's dilemma (Flood&Drescher 1950) 			
 two suspects arrested 		A talks	A is silent
 if one testifies and the other remains silent then the witness is released the other serves 10 years prison 			
 if both testify then both serve 7 years prison 	B talks	A: -7	A: -10
 if no one testify then they receive 2 years prison 		B: -7	B: 0
Best social strategy			
- no one testifies	D is silent	A: 0	A: -2
Nash equilibrium	B is silent	B: -10	B: -2
 for a constant choice of the other party each player optimizes his benefit 			
 if both talk then there is a Nash equilibrium 			S

CoNe Freiburg

Dominant Strategy

Dominant strategy			
 a strategy is dominant if it is always better than every other strategy 		A talks	A is silent
 in the prisoner's dilemma every player has a dominant strategy talk! 	B talks	A: -7 B: -7	A: -10 B: 0
Nash equilibrium		D1	<u>Б.</u> 0
 for a constant choice of the other party each player optimizes his benefit 	B is silent	A: 0 B: -10	A: -2 B: -2
 if both talk then there is a Nash equilibrium 			
 is not necessary Pareto-optimal 			

11

Prisoner's Dilemma of Peer to Peer Filesharing

 Rational strategy for downloading peer: Download 		U: Peer uploads	U: Peer rejects upload
 Rational strategy for	D: Peer	D: 10 U: -1	D: 0
uploading peer: Don't upload	downloads		U: 0
 Nash equilibrium Uploader rejects	D: Peer does	D: 0	D: 0
upload for downloader	not download	U: 0	U: 0

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - concentrates on download
 - uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - efficient download of a file using the uploads of all participating peers
 - efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL
 - fairness among peers
 - seeders against leeches
 - usage of several sources

13

- Central coordination
 - by tracker host
 - for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information
 - tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences
- File
 - is partitions in smaller pieces
 - as described in tracker file
 - every participating peer can redistribute downloaded parts as soon as he received it
 - Bittorrent aims at the Split-Stream idea
- Interaction between the peers
 - two peers exchange their information about existing parts
 - according to the policy of Bittorrent outstanding parts are transmitted to the other peer

- Problem
 - The Coupon-Collector-Problem is the reason for a uneven distribution of parts if a completely random choice is used
- Measures
 - Rarest First
 - Every peer tries to download the parts which are rarest
 - density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download
 - Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - especially when peers only shortly join
 - Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - then a slow peer can not stall the last download

- Goal
 - self organizing system
 - good (uploading, seeding) peers are rewarded
 - bad (downloading, leeching) peers are penalized
- Reward
 - good download speed
 - un-choking
- Penalty
 - Choking of the bandwidth
- Evaluation
 - Every peers Peers evaluates his environment from his past experiences

- Every peer has a choke list
 - requests of choked peers are not served for some time
 - peers can be unchoked after some time
- Adding to the choke list
 - Each peer has a fixed minimum amount of choked peers (e.g. 4)
 - Peers with the worst upload are added to the choke list
 - and replace better peers
- Optimistic Unchoking
 - Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

Alternatives for BitTorrent

- Rational strategy for downloading peer:
 - Download
- Rational strategy for uploading peer:
 - Now: upload
- Nash equilibrium
 - Uploading and Downloading

	U: Peer uploads	U: Peer rejects upload
D: Peer downloads	D: 7 U: 3	D: 0 U: 0
D: Peer does not download	D: 0 U: 0	D: 0 U: 0

FREIBURG

A Other Possible Mechanisms: **CoNe Freiburg** Monetary Payment Schemes

Advantage

- allow to use economic mechanisms
- charge free-riders for misbehavior
- Disadvantage
 - require infrastructure for accounting and micropayments
- Major problems
 - how to encourage truthful relevation of costs
 - solution: Vickrey-Clarke-Groves (VCG-mechanisms)
 - strategyproof mechanism
 - encourage truthful revelation in dominant strategies
 - how to encourage cooperate behavior despite hidden actions
 - information asymmetry
 - use contracts
 - how to deliver the payment
 - e.g. the deliverer also receives some part of the payment

Mechanism Design

- Define rules of the games
 - such that rational behavior is good behavior
 - e.g. auction system: second best wins
- Inverse game theory
 - how to design the rules such that the desired outcome occurs
 - provide incentives
- Obedient center
 - the rule system must be enforced on all the nodes
 - altruistic rule maker
 - central control or distributed software control mechanism or cryptography
- Mechanism design can be computationally hard
 - calculating the optimal strategy can be difficult
 - not all the information may be available to each player
 - finding the best rule system poses an even more difficult problem
- Algorithmic Mechanism Design
 - Mechanism is carried out via a distributed computation

CoNe Freiburg

Reciprocity based Schemes

Reciprocity based schemes

- Users maintain histories of past behavior of other users
- used for decision making
- Direct-reprocity scheme
 - A decides how to serve user B based solely on the service that B has provided
 - e.g. Bittorrent
 - still possibilities for manipulation
- Indirect-reciprocity scheme
 - aka. reputation based schemes
 - more scalable for
 - large population sizes
 - highly dynamic memberships
 - infrequent repeat transactions

21

Problems

- How to treat newcomers?
 - whitewashing attacks
 - irreplacable pseudonyms
 - penalty for newcomers
- Indirect reciprocity is vulnerable to deceits, false accusations & false praises

- sybil attacks
- sybilproofness

CoNe Freiburg

Reciprocative Decision Functions

Discriminating Server Selection

- use history records to choose partners

Shared history

- communicate the history with other peers
 - problem: false praise or false accusations

Subjective reputation

- e.g. max-flow algorithm that collects the reputation be the combination of history of other users
- e.g. page-rank algorithm
- Adaptive stranger policy
 - treat strangers like the previously seen strangers
 - arrest usual suspects only if the crime rate is high

Short-term history

- long history records allow peers to gather reputation and then turn into traitors
- short-term history records will discipline all peers

Future Research Directions

- How to overcome the prisoner's dilemma
 - game theory the right tool?
- What is rational behavior?
 - Is Nash equilibrium the right model
- Influence of different user behavior
 - different grades of selfishness or altruism
- Contracts can lead to desired behavior of peers
 - computational complexity of optimal contracts unknown

Peer-to-Peer Networks 11 Game Theory

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg