
Peer-to-Peer Networks
11 Past

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

PAST

 PAST: A large-scale, persistent peer-to-peer storage utility

- by Peter Druschel (Rice University, Houston – now Max-Planck-Institut,

Saarbrücken/Kaiserlautern)

- and Antony Rowstron (Microsoft Research)

 Literature

- A. Rowstron and P. Druschel, "Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM

SOSP'01, 2001.

• all pictures from this paper

- P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-

peer storage utility", HotOS VIII, May 2001.

2

Goals of PAST

 Peer-to-Peer based Internet Storage

- on top of Pastry

 Goals

- File based storage

- High availability of data

- Persistent storage

- Scalability

- Efficient usage of resources

3

Motivation

 Multiple, diverse nodes in the Internet can be

used

- safety by different locations

 No complicated backup

- No additional backup devices

- No mirroring

- No RAID or SAN systems with special hardware

 Joint use of storage

- for sharing files

- for publishing documents

 Overcome local storage and data safety

limitations

4

Interface of PAST

 Create:
fileId = Insert(name, owner-credentials, k, file)

- stores a file at a user-specified number k of divers nodes

within the PAST network

- produces a 160 bit ID which identifies the file (via SHA-

1)

 Lookup:
file = Lookup(fileId)

- reliably retrieves a copy of the file identified fileId

 Reclaim:
Reclaim(fileId, owner-credentials)

- reclaims the storage occupied by the k copies of the file

identified by fileId

5

Interface of PAST

 Other operations do not exist:

- No erase

• to avoid complex agreement protocols

- No write or rename

• to avoid write conflicts

- No group right management

• to avoid user, group managements

- No list files, file information, etc.

 Such operations must be provided by additional

layer

6

Relevant Parts of Pastry

 Leafset:

- Neighbors on the ring

 Routing Table

- Nodes for each prefix + 1

other letter

 Neighborhood set

- set of nodes which have

small TTL

7

Interfaces of Pastry

 route(M, X):

- route message M to node with nodeId numerically

closest to X

 deliver(M):

- deliver message M to application

 forwarding(M, X):

- message M is being forwarded towards key X

 newLeaf(L):

- report change in leaf set L to application

8

Insert Request Operation

 Compute fileId by hashing

- file name

- public key of client

- some random numbers, called salt

 Storage (k x filesize)

- is debited against client‘s quota

 File certificate

- is produced and signed with owner‘s private key

- contains fileID, SHA-1 hash of file‘s content, replication factor k, the

random salt, creation date, etc.

9

Insert Request Operation

 File and certificate are routed via Pastry

• to node responsible for fileID

 When it arrives in one node of the k nodes close to the fileId

• the node checks the validityof the file

• it is duplicated to all other k-1 nodes numerically close to fileId

 When all k nodes have accepted a copy

• Each node sends store receipt to the owner

 If something goes wrong an error message is sent back

• and nothing stored

10

Lookup

 Client sends message with requested fileId into

the Pastry network

 The first node storing the file answers

- no further routing

 The node sends back the file

 Locality property of Pastry helps to send a close-

by copy of a file

11

Reclaim

 Client sends reclaim certificate

- allowing the storing nodes to check that the claim is

authentificated

 Each node sends a reclaim receipt

 The client uses this receipt to the retrieve the

storage from the quota management

12

Security

 Smartcard

- for PAST users which want to store files

- generates and verifies all certificates

- maintain the storage quotas

- ensure the integrity of nodeID and fileID assignment

 Users/nodes without smartcard

- can read and serve as storage servers

 Randomized routing

- prevents eavesdropping of messages

 Malicious nodes only have local influence

13

Storage Management

 Goals

- Utilization of all storage

- Storage balancing

- Providing k file replicas

 Methods

- Replica diversion

• exception to storing replicas nodes in the leafset

- File diversion

• if the local nodes are full all replicas are stored at different

locations

14

Causes of Storage Load Imbalance

 Statistical variation

- birthday paradoxon (on a weaker scale)

 High variance of the size distribution

- Typical heavy-tail distribution, e.g. Pareto distribution

 Different storage capacity of PAST nodes

15

Heavy Tail Distribution

 Discrete Pareto Distribution for x ∈ {1,2,3,…}

- with constant factor

 Heavy tail

- only for small k moments E[Xk] are defined

- Expectation is defined only if α>2

- Variance and E[X2] only exist if α>3

- E[Xk] is defined ony if α>k+1

 Often observed:

- Distribution of wealth, sizes of towns, frequency of words, length of

molecules, ...,

- file length, WWW documents

• Heavy-Tailed Probability Distributions in the World Wide Web, Crovella et

al. 1996

16

Per-Node Storage

 Assumption:

- Storage of nodes differ by at most a factor of 100

 Large scale storage

- must be inserted as multiple PAST nodes

 Storage control:

- if a node storage is too large it is asked to split and

rejoin

- if a node storage is too small it is rejected

17

Replica Diversion

 The first node close to the

fileId checks whether it can

store the file

- if yes, it does and sends the store

receipt

 If a node A cannot store the

file, it tries replica diversion

- A chooses a node B in its leaf set

which is not among the k closest

asks B to store the copy

- If B accepts, A stores a pointer to

B and sends a store receipt

 When A or B fails then the

replica is inaccessible

- failure probability is doubled

18

Policies for Replica Diversion

 Acceptance of replicas at a node

- If (size of a file)/(remaining free space) > t then reject the file

• for different t`s for close nodes (tpri) and far nodes (tdiv), where

tpri > tdiv

- discriminates large files and far storage

 Selecting a node to store a diverted replica

- in the leaf set and

- not in the k nodes closest to the fileId

- do not hold a diverted replica of the same file

 Deciding when to divert a file to different part of the Pastry ring

- If one of the k nodes does not find a proxy node

- then it sends a reject message

- and all nodes for the replicas discard the file

19

File Diversion

 If k nodes close to the chosen fileId

- cannot store the file

- nor divert the replicas locally in the

leafset

 then an error message is sent to the

client

 The client generates a new fileId

using different salt

- and repeats the insert operation up to

3 times

- then the operation is aborted and a

failure is reported to the application

 Possibly the application retries with

small fragments of the file

20

Maintaining Replicas

 Pastry protocols checks leaf set periodically

 Node failure has been recognized

• if a node is unresponsive for some certain time

- Pastry triggers adjustment of the leaf set

• PAST redistributes replicas

- if the new neighbor is too full, then other nodes in the nodes will be

uses via replica diversion

 When a new node arrives

- files are not moved, but pointers adjusted (replica diversion)

- because of ratio of storage to bandwidth

21

File Encoding

 k replicas is not the best redundancy strategy

 Using a Reed-Solomon encoding

- with m additional check sum blocks to n original data blocks

- reduces the storage overhead to (m+n)/n times the file size

• if all m+n shares are distributed over different nodes

- possibly speeds upt the access spee

 PAST

- does NOT use any such encoding techniques

22

Caching

 Goal:

- Minimize fetch distance

- Maximize query throughput

- Balance the query load

 Replicas provide these features

- Highly popular files may demand many more replicas

• this is provided by cache management

 PAST nodes use „unused“ portion to cache files

- cached copies can be erased at any time

• e.g. for storing primary of redirected replicas

 When a file is routed through a node during lookup or insert

it is inserted into the local cache

 Cache replacement policy: GreedyDual-Size

- considers aging, file size and costs of a file

23

Experimental Results Caching

24

Summary

 PAST provides a distributed storage system

- which allows full storage usage and locality features

 Storage management

- based ond Smartcard system

• provides a hardware restriction

- utilization moderately increases failure rates and time

behavior

25

Peer-to-Peer Networks
11 Past

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

