

### Peer-to-Peer Networks 13 Internet – The Underlay Network

UNI FREIBURG

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg

CoNe Freiburg

### Types of Networks

| Interprocessor<br>distance | Processors<br>located in same | Example                   |  |  |
|----------------------------|-------------------------------|---------------------------|--|--|
| 1 m                        | Square meter                  | Personal area network     |  |  |
| 10 m                       | Room                          |                           |  |  |
| 100 m                      | Building                      | Local area network        |  |  |
| 1 km                       | Campus                        |                           |  |  |
| 10 km                      | City                          | Metropolitan area network |  |  |
| 100 km                     | Country                       |                           |  |  |
| 1000 km                    | Continent                     | Wide area network         |  |  |
| 10,000 km                  | Planet                        | The Internet              |  |  |



- global system of interconnected WANs and LANs
- open, system-independent, no global control



[Tanenbaum, Computer Networks]

## A Interconnection of Subnetworks Freiburg



[Tanenbaum, Computer Networks]



### History of the Internet

- 1961: Packet Switching Theory
  - Leonard Kleinrock, MIT, "Information Flow in Communication Nets"
- 1962: Concept of a "Galactic Network"
  - J.C.R. Licklider and W. Clark, MIT, "On-Line Man Computer Communication"
- 1965: Predecessor of the Internet
  - Analog modem connection between 2 computers in the USA
- 1967: Concept of the "ARPANET"
  - Concept of Larry Roberts
- 1969: 1st node of the "ARPANET"
  - at UCLA (Los Angeles)
  - end 1969: 4 computers connected



5



# ARPANET (a) December 1969 (b) July 1970 (c) March 1971 (d) April 1972 (e) September 1972



JNI REIBURG

CoNe Freiburg

### Internet ~2005





### An Open Network Architecture

- Concept of Robert Kahn (DARPA 1972)
  - Local networks are autonomous
    - independent
    - no WAN configuration
  - packet-based communication
  - "best effort" communication
    - if a packet cannot reach the destination, it will be deleted
    - the application will re-transmit
  - black-box approach to connections
    - black boxes: gateways and routers
    - packet information is not stored
    - no flow control
  - no global control
- Basic principles of the Internet

CoNe Freiburg

### Protocols of the Internet

| Application     | Telnet, FTP, HTTP, SMTP (E-Mail),                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Transport       | TCP (Transmission Control Protocol) UDP (User Datagram<br>Protocol)                                                                 |
| Network         | IP (Internet Protocol)<br>IPv4 + IPv6<br>+ ICMP (Internet Control Message Protocol)<br>+ IGMP (Internet Group Management Protoccol) |
| Host-to-Network | LAN (e.g. Ethernet, W-Lan etc.)                                                                                                     |
|                 |                                                                                                                                     |



- I. Host-to-Network
  - Not specified, depends on the local networ,k e.g. Ethernet, WLAN 802.11, PPP, DSL
- 2. Routing Layer/Network Layer (IP Internet Protocol)
  - Defined packet format and protocol
  - Routing
  - Forwarding
- 3. Transport Layer
  - TCP (Transmission Control Protocol)
    - Reliable, connection-oriented transmission
    - Fragmentation, Flow Control, Multiplexing
  - UDP (User Datagram Protocol)
    - hands packets over to IP
    - unreliable, no flow control
- 4. Application Layer
  - Services such as TELNET, FTP, SMTP, HTTP, NNTP (for DNS), ...
  - Peer-to-peer networks



## Reference Models: OSI versus TCP/IP







### Network Interconnections



[Tanenbaum, Computer Networks]



### Example: Routing between LANs



13

#### CoNe Freiburg

#### Data/Packet Encapsulation





### IPv4-Header (RFC 791)

- Version: 4 = IPv4
- IHL: IP header length
  - in 32 bit words (>5)
- Type of service
  - optimize delay, throughput, reliability, monetary cost
- Checksum (only IP-header)
- Source and destination IP-address
- Protocol identifies protocol
  - e.g. TCP, UDP, ICMP, IGMP
- Time to Live:
  - maximal number of hops

| <ul> <li>✓ 32 Bits —</li> </ul> |                           |                 |                                         |              |  |  |  |  |  |
|---------------------------------|---------------------------|-----------------|-----------------------------------------|--------------|--|--|--|--|--|
|                                 |                           |                 |                                         |              |  |  |  |  |  |
| Version                         | IHL                       | Type of service |                                         | Total length |  |  |  |  |  |
|                                 | Identif                   | ication         | D     M       F     F   Fragment offset |              |  |  |  |  |  |
| Time to live Protocol           |                           |                 | Header checksum                         |              |  |  |  |  |  |
|                                 | Source address            |                 |                                         |              |  |  |  |  |  |
|                                 | Destination address       |                 |                                         |              |  |  |  |  |  |
|                                 | Options (0 or more words) |                 |                                         |              |  |  |  |  |  |

INI REIBURG



#### IP addresses

- every interface in a network has a unique world wide IP address
- separated in Net-ID and Host-ID
- Net-ID assigned by Internet Network Information Center
- Host-ID by local network administration
- Domain Name System (DNS)
  - replaces IP addresses like 132.230.167.230 by names,
     e.g. falcon.informatik.uni-freiburg.de and vice versa
  - Robust distributed database



- Classes A, B, and C
- D for multicast; E: "reserved" 32 Bits 1 1 1 1 1 T T T T T Range of host Class addresses 128 NWs; 1.0.0.0 to Network Host 16 M hosts Α 0 127.255.255.255 16K NWs; 128.0.0.0 to Network В Host 10 191.255.255.255 64K hosts 192.0.0.0 to 2M NWs; С Network 110 Host 223.255.255.255 256 hosts 224.0.0.0 to D Multicast address 1110 239.255.255.255 240.0.0.0 to Е Reserved for future use 1111 255.255.255.255 UNI FREIBURG codes classes



### Classless IPv4-Addresses

- Until 1993 (deprecated)
  - 5 classes marked by Präfix
  - Then sub-net-id prefix of fixed length and host-id
- Since 1993
  - Classless Inter-Domain-Routing (CIDR)
  - Net-ID and Host-ID are distributed flexibly
  - E.g.
    - Network mask /24 or 111111111111111111111111111100000000
    - denotes, that IP-address
      - 10000100. 11100110. 10010110. 11110011
      - consists of network 10000100. 11100110. 10010110
      - and host 11110011
- Route aggregation
  - Routing protocols BGP, RIP v2 and OSPF can address multiple networks using one ID
    - Z.B. all Networks with ID 10010101010\* can be reached over host X



## Routing Tables and Packet Forwarding

- IP Routing Table
  - contains for each destination the address of the next gateway
  - destination: host computer or sub-network
  - default gateway
- Packet Forwarding
  - IP packet (datagram) contains start IP address and destination IP address
    - if destination = my address then hand over to higher layer
    - if destination in routing table then forward packet to corresponding gateway
    - if destination IP subnet in routing table then forward packet to corresponding gateway
    - otherwise, use the default gateway



- IP -Packet (datagram) contains...
  - TTL (Time-to-Live): Hop count limit
  - Start IP Address
  - Destination IP Address
- Packet Handling
  - Reduce TTL (Time to Live) by 1
  - If TTL  $\neq$  0 then forward packet according to routing table
  - If TTL = 0 or forwarding error (buffer full etc.):
    - delete packet
    - if packet is not an ICMP Packet then
      - send ICMP Packet with
      - start = current IP Address
      - destination = original start IP Address

UNI



## Introduction to Future IP

- IP version 6 (IP v6 around July 1994)
- Why switch?
  - rapid, exponential growth of networked computers
  - shortage (limit) of the addresses
  - new requirements towards the Internet infrastructure (streaming, real-time services like VoIP, video on demand)
- evolutionary step from IPv4
- Interoperable with IPv4

UNI



### Capabilities of IP

- dramatic changes of IP
  - Basic principles still appropriate today
  - Many new types of hardware
  - Scale of Internet and interconnected computers in private LAN
- Scaling
  - Size from a few tens to a few tens of millions of computers
  - Speed from 9,6Kbps (GSM) to 10Gbps (Ethernet)
  - Increased frame size (MTU) in hardware



### IPv6-Header (RFC 2460)

- Version: 6 = IPv6
- Traffic Class
  - for QoS (priority)
- Flow Label
  - QoS or real-time
- Payload Length
  - size of the rest of the IP packet
- Next Header (IPv4: protocol)
  - e..g. ICMP, IGMP, TCP, EGP, UDP, Multiplexing, ...
- Hop Limit (Time to Live)
  - maximum number of hops
- Source Address
- Destination Address
  - 128 bit IPv6 address

| 0                    | 1                 | 2            | 3            |
|----------------------|-------------------|--------------|--------------|
| 012345678            | 0 1 2 3 4 5 6 7 8 | 9012345      | 6789012      |
| +-+-+-+-+-+-+-+-+    | -+-+-+-+-+-+-+-+  | -+-+-+-+-+-+ | -+-+-+-+-+-+ |
| [Version] Traffic C. | lass   E          | low Label    | 1            |
| +-+-+-+-+-+-+-+-+    | -+-+-+-+-+-+-+-+  | -+-+-+-+-+-+ | -+-+-+-+-+-+ |
| Payload L            | ength   Ne        | xt Header    | Hop Limit    |
| +-+-+-+-+-+-+-+-+    | -+-+-+-+-+-+-+    | -+-+-+-+-+-+ | -+-+-+-+-+-+ |
| 1                    |                   |              | 1            |
| +                    |                   |              | +            |
| 1                    |                   |              | 1            |
| +                    | Source Addr       | e88          | +            |
| 1                    |                   |              | 1            |
| +                    |                   |              | +            |
| 1                    |                   |              | I            |
| +-+-+-+-+-+-+-+-+    | -+-+-+-+-+-+-+    | -+-+-+-+-+-+ | -+-+-+-+-+-+ |
| I                    |                   |              |              |
| +                    |                   |              | +            |
| I                    |                   |              |              |
| +                    | Destination Ad    | dress        | +            |
| I                    |                   |              | l            |
| +                    |                   |              | +            |
| 1                    |                   |              | 1            |
| +-+-+-+-+-+-+-+-+    | -+-+-+-+-+-+-+    | -+-+-+-+-+-+ | -+-+-+-+-+-+ |



## Static and Dynamic Routing

- Static Routing
  - Routing table created manually
  - used in small LANs
- Dynamic Routing
  - Routing table created by Routing Algorithm
  - Centralized, e.g. Link State
    - Router knows the complete network topology
  - Decentralized, e.g. Distance Vector
    - Router knows gateways in its local neighborhood



### Intra-AS Routing

- Routing Information Protocol (RIP)
  - Distance Vector Algorithmus
  - Metric = hop count
  - exchange of distance vectors (by UDP)
- Interior Gateway Routing Protocol (IGRP)
  - successor of RIP
  - different routing metrics (delay, bandwidth)
- Open Shortest Path First (OSPF)
  - Link State Routing (every router knows the topology)
  - Route calculation by Dijkstra's shortest path algorithm



## Distance Vector Routing Protocol

- Distance Table data structure
  - Each node has a
    - Line for each possible destination
    - Column for any direct neighbors
- Distributed algorithm
  - each node communicates only with its neighbors
- Asynchronous operation
  - Nodes do not need to exchange information in each round
- Self-terminating
  - exchange unless no update is available



#### **Distance Table for C**



26

JNI REIBURG

CoNe Freiburg

## Distance Vector Routing Example



| from<br>A to | vi | optry |       |
|--------------|----|-------|-------|
|              | В  | С     | entry |
| В            | 1  | 8     | В     |
| С            | 6  | 3     | С     |
| D            | 2  | 9     | В     |
| E            | 7  | 4     | С     |

**Distance Vector Routing** CoNe Freiburg



| from<br>C to |   | ontra |   |       |  |
|--------------|---|-------|---|-------|--|
|              | Α | В     | Е | entry |  |
| Α            | 3 | -     | - | Α     |  |
| В            | - | 5     | - | В     |  |
| D            | - | -     | 8 | E     |  |
| Е            | - | -     | 1 | E     |  |

entry

Β

С

-

-

С

-

3

-

-

UNI FREIBURG

28

. CoNe Freiburg

### Distance Vector Routing

|      |          |     |     |         |                        |      | -   |     |   |       |
|------|----------|-----|-----|---------|------------------------|------|-----|-----|---|-------|
| from |          | via |     | Entry ( |                        | from | via |     |   | E     |
| B to | Α        | С   | D   | Entry   |                        | C to | Α   | В   | Е | Entry |
| Α    | 1        | -   | -   | Α       |                        | Α    | 3   | -   | - | Α     |
| С    | -        | 5   | -   | С       |                        | В    | -   | 5   | - | В     |
| D    | -        | -   | 1   | D       | $\leftarrow$           | D    | -   | -   | 8 | Е     |
| Е    | -        | -   | 8   | D       |                        | E    | -   | -   | 1 | Е     |
|      |          |     |     |         | (A)                    |      |     |     |   |       |
| from | from via |     | 1/3 |         | from                   |      |     | via |   |       |
| B to | Α        | С   | D   | Entry   | $\checkmark 5 \rangle$ | C to | Α   | В   | Е | Entry |
| Α    | 1        | 8   | -   | A       | (B) - (C)              | Α    | 3   | 6   | - | Α     |
| С    | -        | 5   | -   | С       | 1 1                    | В    | -   | 5   | - | В     |
| D    | -        | 13  | 1   | D       |                        | D    | -   | 6   | 8 | В     |
|      |          |     |     |         | (D)(E)                 | E    |     | 10  |   |       |
| Е    | -        | 6   | 8   | C       | $\sim$                 | E    | -   | 13  | 1 | N N   |



### "Count to Infinity" - Problem

- Good news travels fast
  - A new connection is quickly at hand
- Bad news travels slowly
  - Connection fails
  - Neighbors increase their distance mutally
  - "Count to Infinity" Problem

CoNe Freiburg

### "Count to Infinity" - Problem





### Link-State Protocol

- Link state routers
  - exchange information using Link State Packets (LSP)
  - each node uses shortest path algorithm to compute the routing table
- LSP contains
  - ID of the node generating the packet
  - Cost of this node to any direct neighbors
  - Sequence-no. (SEQNO)
  - TTL field for that field (time to live)
- Reliable flooding (Reliable Flooding)
  - current LSP of each node are stored
  - Forward of LSP to all neighbors
    - except to be node where it has been received from
  - Periodically creation of new LSPs
    - with increasing SEQNO
  - Decrement TTL when LSPs are forwarded



- de facto standard
- Path-Vector-Protocol
  - like Distance Vector Protocol
    - store whole path to the target
  - each Border Gateway advertizes to all its neighbors (peers) the complete path to the target (per TCP)
- If gateway X sends the path to the peer-gateway W
  - then W can choose the path or not
  - optimization criteria
    - cost, policy, etc.
  - if W chooses the path of X, it publishes
    - Path(W,Z) = (W, Path(X,Z))
- Remark
  - X can control incoming traffic using advertisements
  - all details hidden here





http://bgp.potaroo.net/as1221/bgp-active.html



### Network Congestion

- (Sub-)Networks have limited bandwidth
- Injecting too many packets leads to
  - network congestion
  - network collapse







Packets sent



**Congestion Prevention** 

| Layer                                                     | Policies                                               |
|-----------------------------------------------------------|--------------------------------------------------------|
| Transport                                                 | <ul> <li>Retransmission policy</li> </ul>              |
|                                                           | <ul> <li>Out-of-order caching policy</li> </ul>        |
|                                                           | <ul> <li>Acknowledgement policy</li> </ul>             |
|                                                           | <ul> <li>Flow control policy</li> </ul>                |
|                                                           | <ul> <li>Timeout determination</li> </ul>              |
| Network     • Virtual circuits versus datagram inside the |                                                        |
|                                                           | <ul> <li>Packet queueing and service policy</li> </ul> |
|                                                           | <ul> <li>Packet discard policy</li> </ul>              |
|                                                           | <ul> <li>Routing algorithm</li> </ul>                  |
|                                                           | <ul> <li>Packet lifetime management</li> </ul>         |
| Data link                                                 | <ul> <li>Retransmission policy</li> </ul>              |
|                                                           | <ul> <li>Out-of-order caching policy</li> </ul>        |
|                                                           | <ul> <li>Acknowledgement policy</li> </ul>             |
|                                                           | <ul> <li>Flow control policy</li> </ul>                |



# Congestion Prevention by Routers

- IP Routers drop packets
  - Tail dropping
  - Random Early Detection





# Random early detection (RED)

- Packet dropping probability grows with queue length
- Fairer than just "tail dropping": the more a host transmits, the more likely it is that its packets are dropped



FREIBURG



- TCP (Transmission Control Protocol
  - connection-oriented
  - delivers a stream of bytes
  - reliable and ordered
- UDP (User Datagram Protocol)
  - delivery of datagrams
  - connectionless, unreliable, unordered





#### TCP reduces data rate

UDP does not!





- Port addresses
  - for parallel UDP connections
- Length
  - data + header length
- Checksum
  - for header and data

| 0 | 78          | 15 16 | 23 24    | 31  |  |  |  |
|---|-------------|-------|----------|-----|--|--|--|
| + | +           | +     | +        | +   |  |  |  |
| I | Source      | I     | Destinat | ion |  |  |  |
| Ι | Port        | I     | Port     | 1   |  |  |  |
| + | +           | +     | +        | +   |  |  |  |
| Ι |             | I     |          | I   |  |  |  |
| I | Length      | I     | Checksu  | m   |  |  |  |
| + | +           | +     | +        | +   |  |  |  |
| I |             |       |          |     |  |  |  |
| Ι | data octets |       |          |     |  |  |  |
| + |             |       |          |     |  |  |  |



#### A The Transmission Control Protocol **CoNe Freiburg** (TCP)

- Connection-oriented
- Reliable delivery of a byte stream
  - fragmentation and reassembly (TCP segments)
  - acknowledgements and retransmission
- In-order delivery, duplicate detection
  - sequence numbers
- Flow control and congestion control
  - window-based (receiver window, congestion window)
- challenge: IP (network layer) packets can be dropped, delayed, delivered out-oforder ...



- Sequence number
  - number of the first byte in the segment
  - bytes are numbered modulo 2<sup>32</sup>
- Acknowledge number
  - activated by ACK-Flag
  - number of the next data byte
    - = last sequence number + last amount of data
- Port addresses
  - for parallel TCP connections
- TCP Header length
  - data offset
- Check sum
  - for header and data

| )<br>) 1 2 3 4 5 6 (<br>-+-+-+-+-+-+-+-<br>Rourd | $\begin{bmatrix} 1 \\ 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-$                              | 2<br>7 8 9 0 1 2 3 4 5<br>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | 678901<br>+-+-+-+-+-+ |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------|--|--|--|
| -+-+-+-+-+-+-+-+-+-                              | -+-+-+-+-+-+-+-+-+                                                                                                                 | +_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_                         | +_+_+_+_+_+_+_+<br>   |  |  |  |
| Acknowledgment Number                            |                                                                                                                                    |                                                                  |                       |  |  |  |
| Data  <br>Offset  Reserv                         | Ved    <b>A</b>   <b>P</b>   <b>R</b>   <b>S</b>   <b>F</b>  <br>  <b>G</b>   <b>K</b>   <b>H</b>   <b>T</b>   <b>N</b>   <b>N</b> | Window                                                           |                       |  |  |  |
| Cheo                                             | -+_+_+_+_+_+_+_+_+_+_<br>cksum  <br>-+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_                                                        | Urgent Poir                                                      |                       |  |  |  |
|                                                  | Options                                                                                                                            | I                                                                | Padding               |  |  |  |



Connection establishment and teardown by 3-way handshake





## Flow control and congestion control





#### acknowledgements and window management





### Retransmissions

- Retransmissions are triggered, if acknowledgements do not arrive ... but how to decide that?
- Measure as the the recursed trip times (DT
- Measurement of the round trip time (RTT)









- If no acknowledgement arrives before expiry of the Retransmission Timeout (RTO), the packet will be retransmitted
  - RTT not predictable, fluctuating
- RTO derived from RTT estimation:
  - RFC 793: (M := last RTT measurement)
    - RTT  $\leftarrow \alpha$  RTT + (1- $\alpha$ ) M, where  $\alpha = 0.9$
    - RTO  $\leftarrow \beta$  RTT, where  $\beta = 2$
  - Alternative by Jacobson 88 (using the deviation D):
    - D  $\leftarrow \alpha'$  D + (1- $\alpha'$ ) |RTT M|
    - RTT  $\leftarrow \alpha$  RTT + (1- $\alpha$ ) M
    - RTO  $\leftarrow$  RTT + 4D



## TCP - Algorithm of Nagle

- How to ensure
  - small packages are shipped fast
  - yet, large packets are preferred
- Algorithm of Nagle
  - Small packets are not sent, as long as acks are still pending
    - Package is small, if data length <MSS</li>
  - when the acknowledgment of the last packet arrives, the next one is sent
- Example:
  - terminal versus file transfer versus ftp
- Feature: self-clocking:
  - Quick link = many small packets
  - slow link = few large packets



## Congestion revisited

- IP Routers drop packets
- TCP has to react, e.g. lower the packet injection rate







#### from a transport layer perspective:



### A Data rate adaption and the congestion Freiburg Window

- Sender does not use the maximum segment size in the beginning
- Congestion window (cwnd)
  - used on the sender size
  - sending window: min {wnd,cwnd} (wnd = receiver window)
  - S: segment size
  - Initialization:
    - cwnd  $\leftarrow$  S
  - For each received acknowledgement:
    - cwnd  $\leftarrow$  cwnd + S
  - ...until a packet remains unacknowledged







### TCP Tahoe's slow start





- TCP Tahoe [Jacobson 1988]:
  - If only one packet is lost
    - retransmit and use the rest of the window
    - Slow Start
  - Fast Retransmit
    - after three duplicate ACKs, retransmit Packet, start with Slow Start
- TCP Reno [Stevens 1994]
  - After Fast Retransmit:
    - ssthresh  $\leftarrow$  min(wnd,cwnd)/2
    - cwnd  $\leftarrow$  ssthresh + 3 S
  - Fast recovery after Fast retransmit
    - Increase window size by each single acknowledgement
    - cwnd  $\leftarrow$  cwnd + S
  - Congestion avoidance: if P+x is acknowledged:
    - cwnd ← ssthresh





## The AIMD principle

- TCP uses basically the following mechanism to adapt the data rate x (#packets sent per RTT):
  - Initialization:

- on packet loss: multi x ~ x/2 crease (MD)
- if the acknowledgement for a segment arrives, perform additive increase (AI)  $x \leftarrow x + 1$







## Throughput and Latency





## Vector diagram for 2 participants





### AIAD Additive Increase/ Additive Decrease





# MIMD: Multiplicative Incr./ Multiplicative Decrease





AIMD: Additively Increase/ Multiplicatively Decrease





- Connection-oriented, reliable, in-order delivery of a byte stream
- Flow control and congestion control
  - Fairness among TCP streams
  - Unfair behavior of other protocols, e.g. UDP
  - Impact on latency
  - Tweaking the congestion avoidance mechanism has an impact on other applications



### Peer-to-Peer Networks 13 Internet – The Underlay Network

UNI FREIBURG

Christian Ortolf Technical Faculty Computer-Networks and Telematics University of Freiburg