
Peer-to-Peer Networks
14 Security

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

Motivation for Anonymity

 Society

- Free speech is only possible if the speaker does not suffer negative consequences

- Thus, only an anonymous speaker has truly free speech

 Copyright infringement

- Copying items is the best (and most) a computer can do

- Copyright laws restrict copying

- Users of file sharing systems do not want to be penalized for their participation or behavior

 Dictatorships

- A prerequisite for any oppressing system is the control of information and opinions

- Authors, journalists, civil rights activists like all citizens should be able to openly publish

documents without the fear of penalty

 Democracies

- Even in many democratic states certain statements or documents are illegitimate, e.g.

• (anti-) religious statements

• insults (against the royalty)

• certain types of sexual contents

• political statements (e.g. for fascism, communism, separation, revolution)

 A anonymizing P2P network should secure the privacy and anonymity of each

user without endangering other users

2

Terms

 From

- Danezis, Diaz, A Survey of Anonymous Communication

Channels

- Pfitzmann, Hansen, Anonymity, Unobservability and

Pseudonymity – A Proposal for Terminology

 Anonymity (Pfitzmann-Hansen 2001)

- describes the state of being not identifiable within a

larger set of subjects (peers), i.e.

• the anonymity set

- The anonymity set can be all peers of a peer-to-peer

network

• yet can be another (smaller or larger) set

3

Terms

 Unlinkability

- Absolute (ISO15408)

• „ensures that a user may make multiple uses of

resources or services without other being able to link

these uses together.“

- Relative

• Any attacker cannot find out more about the connections

of the uses by observing the system

- a-priori knowledge = a-posteriori knowledge

4

Terms

 Unobservability

- The items of interests are protected

- The use or non-use of any service cannot be detected

by an observer (attacker)

 Pseudonymity

- is the use of pseudonyms as IDs

- preserves accountability and trustability while preserving

anonymity

5

Attacks

 Denial-of-Service Attacks (DoS)

- or distributed denial of service attacks (DDoS)

- one or many peers ask for a document

- peers are slowed down or blocked completely

 Sybil Attacks

- one attacker produces many fake peers under new IP

addresses

- or the attacker controls a bot-net

 Use of protocol weaknesses

 Infiltration by malign peers

- Byzantine Generals

6

Attacks

 Timing attacks

- messages are slowed down

- communication line is slowed down

- a connection between sender and receiver can be established

 Poisoning Attacks

- provide false information

- wrong routing tables, wrong index files etc.

 Eclipse Attack

- attack the environment of a peer

- disconnect the peer

- build a fake environment

 Surveillance

- full or partial

7

Cryptography in a Nutshelf

 Symmetric Cryptography

- AES

- Affine Cryptosystems

 Public-Key Cryptography

- RSA

- ElGamal

 Digital Signatures

 Public-Key-Exchange

- Diffie-Hellman

 Interactive Proof Systems

• Zero-Knowledge-Proofs

• Secret Sharing

• Secure Multi-Party Computation

8

Blakley‘s Secret Sharing

 George Blakley, 1979

 Task

- n persons have to share a secret

- only when k of n persons are present the secret is allowed

to be revealed

 Blakley‘s scheme

- in a k-dimensional space the intersection of k non-parallel k-

1-dimensional spaces define a point

- this point is the information

- with k-1 sub-spaces one gets only a line

 Construction

- A third (trusted) instance generate for a point n in Rk k non-

parallel k-1-dimensional hyper-spaces

9

 Adi Shamir, 1979

 Task

- n persons have to share a secret s

- only k out of n persons should be able to reveal this

secret

 Construction of a trusted third party

- chooses random numbers a1,...,ak-1

- defines

- chooses random x1, x2, ..., xn

- sends (xi,f(xi)) to player i

Shamir‘s Secret Sharing Systems

10

 If k persons meet

- then they can compute the function f by the fundamental theorem

of algebra

• a polynomial of degree d is determined by d+1 values

- for this they exchange their values and compute by interpolation

• (e.g. using Lagrange polynoms)

 If k-1 persons meet

- they cannot compute the secret at all

- every value of s remains possible

 Usually, Shamir‘s and Blakley‘s scheme are used in finite

fields

- i.e. Galois fields (known from CRC)

- this simplifies the computation and avoids rounding errors in the

context of floating numbers

Shamir‘s Secret Sharing Systems

11

Dining Cryptographers

 Anonymous publications without any

tracing possibility

 n ≥ 3 cryptographers sit at a round table

- neighbored cryptographers can

communicate secretly

 Each peer chooses secret number xi and

communicates it to the right neighbor

 If i wants to send a message m

- he publishes si = xi - xi-1 + m

 else

- he publishes si = xi - xi-1

 Now they compute the sum s=s1+...+sn

- if s=0 then there is no message

- else the sum of all messages

12

Encryption Methods

 Symmetric encryption algorithms, e.g.

- Feistel cipher

- DES (Digital Encryption Standard)

- AES (Advanced Encryption Standard)

 Cryptographic hash function

- SHA-1, SHA-2

- MD5

 Asymmetric encryption

- RSA (Rivest, Shamir, Adleman)

- El-Gamal

 Digital signatures (electronic signatures)

- PGP (Phil Zimmermann), RSA

13

Symmetric Encryption

 E.g. Caesar's code, DES, AES

 Functions f and g, where

- Encryption f

• f (key, text) = code

- Decoding g:

• g (key, code) = text

 The key

- must remain secret

- must be available to the sender and receiver

14

Feistel Chiffre

 Splitting the message into two halves L1, R1

- Keys K1, K2, ...

- Several rounds: Resulting code: Ln, Rn

 encoding

- Li = Ri-1

- Ri = Li-1 ⊕ f(Ri-1, Ki)

 Decryption

- Ri-1 = Li

- Li-1 = Ri ⊕ f(Li, Ki)

 f may be any complex function

15

Other Symmetric Codes

 Skipjack

- 80-bit symmetric code

- is based on Feistel Cipher

- low security

 RC5

- 1-2048 bits key length

- Rivest code 5 (1994)

- Several rounds of the Feistel cipher

16

Digital Encryption Standard

 Carefully selected combination of

- Xor operations

- Feistel cipher

- permutations

- table lookups

- used 56-bit key

 1975 developed at IBM

- Now no longer secure

- more powerful computers

- New knowledge in cryptology

 Succeeded by: AES (2001)

17

Advanced Encryption Standard

 Carefully selected combination of

- Xor operations

- Feistel cipher

- permutations

- table lookups

- multiplication in GF [28]

- 128, 192 or 256-bit symmetric key

 Joan Daemen and Vincent Rijmen

- 2001 were selected as AES, among many

- still considered secure

18

Cryptographic Hash Function

 E.g. SHA-1, SHA-2, MD5

 A cryptographic hash function h maps a text to a

fixed-length code, so that

- h(text) = code

- it is impossible to find another text:

• h(text‘) = h(text) and text ≠ text'

 Possible solution:

- Using a symmetric cipher

19

Asymmetric Encryption

 E.g. RSA, Ronald Rivest, Adi Shamir, Lenard Adleman, 1977

- Diffie-Hellman, PGP

 Secret key: sk

- Only the receivers of the message know the secret key

 Public key: pk

- All participants know this key

 Generated by

- keygen(sk) = pk

 Encryption function f and decryption function g

- Known to everybody

 Encryption

- f(pk,text) = code

- everybody can generate code

 Decryption

- g(sk,code) = code

- only possibly by receiver

20

Chaum‘s Mix-Cascades

 All peers

- publish the public keys

- are known in the network

 The sender p1 now chooses a route

- p1, r1, r2, r3, ..., p2

 The sender encrypts m according to the

public keys from

- p2, ... r3, r2, r1

- and sends the message

- f(pkk1,(r2,f(pkr2...f(pkrk,(p2,f(pkp2,m)))...)))))

- to r1

 r1 encrypts the code, deciphers the next

hop r2 and sends it to him

 ...

 until p2 receives the message and

deciphers it

21

Chaum‘s Mix Cascades

 No peer on the route

- knows its position on the route

- can decrypt the message

- knows the final destination

 The receiver does not know

the sender

 In addition peers may

voluntarily add detour

routes to the message

 Chaum‘s Mix Cascades

- aka. Mix Networks or Mixes

- is safe against all sort of

attacks,

- but not against traffic analysis

22

TOR - Onion Routers

 David Goldschlag, Michael Reed, and Paul

Syverson, 1998

 Goal

- Preserve private sphere of sender and receiver of a

message

- Safety of the transmitted message

 Prerequisite

- special infrastructure (Onion Routers)

• all except some smaller number of exceptions cooperate

23

TOR - Onion Routers

 Method

- Mix Cascades (Chaum)

- Message is sent from source to the target using proxies (Onion

Routers)

- Onion Routers unpredictably choose other routers as

intermediate routers

- Between sender, Onion Routers, and receiver the message is

encrypted using symmetric cryptography

- Every Onion Router only knows the next station

- The message is encoded like an onion

 TOR is meant as an infrastructure improvement of the

Internet

- not meant as a peer-to-peer network

- yet, often used from peer-to-peer networks

24

Other Work based on Onion Routing

 Crowds

- Reiter & Rubin 1997

- anonymous web-surfing based on Onion Routers

 Hordes

- Shields, Levine 2000

- uses sub-groups to improve Onion Routing

 Tarzan

- Freedman, 2002

- A Peer-to-Peer Anonymizing Network Layer

- uses UDP messages and Chaum Mixes in group to

anonymize Internet traffic

- adds fake traffic against timing attacks

25

Free-Net

 Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore Hong,

2000

 Goal

- peer-to-peer network

- allows publication, replication, data lookup

- anonymity of authors and readers

 Files

- are encoding location independent

• by encrypted and pseudonymously signed index files

• author cannot be identified

- are secured against unauthorized change or deletion

- are encoded by keys unknown by the storage peer

• secret keys are stored elsewhere

- are replicated

• on the look up path

- and erased using “Least Recently Used” (LRU) principle

26

Free-Net

 Network Structure

- is similar to Gnutella

- Free-Net is like Gnutella Pareto distributed

 Storing Files

- Each file can be found, decoded and read using the encoded address string

and the signed subspace key

- Each file is stored together with the information of the index key but without the

encoded address string

- The storage peer cannot read his files

• unless he tries out all possible keywords (dictionary attack)

 Storing of index files

- The address string coded by a cryptographic secure hash function leads to the

corresponding peer

• who stores the index data

- address string

- and signed subspace key

- Using this index file the original file can be found

27

Free-Net

28

Free-Net

29

 Lookup

- steepest-ascent hill-climbing

• lookup is forwarded to the peer whose ID is closest to

the search index

- with TTL field

• i.e. hop limit

 Files are moved to new peers

- when the keyword of the file is similar to the neighbor‘s

ID

 New links

- are created if during a lookup close similarities between

peer IDs are discovered

Efficiency of Free-Net

 Network structure of Free-Net is similar to Gnutella

 The lookup time is polynomial on the average

30

Dark-Net & Friend-to-Friend

 Dark-Net is a private Peer-to-Peer Network

- Members can trust all other members

- E.g.

• friends (in real life)

• sports club

 Dark-Net control access by

- secret addresses,

- secret software,

- authentication using password, or

- central authentication

 Example:

- WASTE

• P2P-Filesharing up to 50 members

• by Nullsoft (Gnutella)

- CSpace

• using Kademlia

31

Solutions to the Sybil Attack

 Survey paper by Levine, Shields, Margonin, 2006

 Trusted certification

- only approach to completely eleminate Sybil attacks

• according to Douceur

- relies on centralized authority

 No solution

- know the problem and deal with the consequences

 Resource testing

- real world friends

- test for real hardware or addresses

• e.g. heterogeneous IP addresses

- check for storing ability

 Recurring cost and fees

- give the peers a periodic task to find out whether there is real hardware behind each peer

• wasteful use of resources

- charge each peer a fee to join the network

 Trusted devices

- use special hardware devices which allow to connect to the network

32

Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006

 In Mobile Networks

- use observations of the mobile node

• e.g. GPS location, neighbor nodes, etc.

 Auditing

- perform tests on suspicious nodes

- or reward a peer who proves that it is not a clone peer

 Reputation Systems

- assign each peer a reputation which grows over the time with each

positive fact

- the reputation indicates that this peer might behave nice in the future

- Disadvantage:

• peers might pretend to behave honestly to increase their reputation and

change their behavior in certain situations

• problem of Byzantine behavior

33

The Problem of Byzantine Generals

 3 armies prepare to attack a castle

 They are separated and

communicate by messengers

 If one army attacks alone, it loses

 If two armies attack, they win

 If nobody attacks the castle is

besieged and they win

 One general is a renegade

- nobody knows who

34

The Problem of Byzantine Generals

 The evil general X tries

- to convince A to attack

- to convince B to wait

 A tells B about X‘s command

 B tells B about his version of

X‘s command

- contradiction

 But is A, B, or X lying?

Wait!

X

A

B

35

The Problem of Byzantine Generals

 The evil general X tries

- to convince A to attack

- to convince B to wait

 A tells B about X‘s command

 B tells B about his version of X‘s

command

- contradiction

 But is A, B, or X lying?

Wait!

X

A

B

36

Byzantine Agreement

 Theorem

- The problem of three byzantine

generals cannot be solved

(without cryptography)

- It can be solved for 4 generals

 Consider: 1 general, 3

officers problem

- If the general is loyal then all

loyal officers will obey the

command

- In any case distribute the

received commands to all fellow

officers

- What if the general is the

renegade?
Evildoer

General A: Attack! A: Attack!

A: AttackA: don‘t care!

37

Byzantine Agreement

 Theorem

- The problem of four byzantine

generals can be solved (without

cryptography)

 Algorithm

- General A sends his command to

all other generals

• A sticks to his command if he is

honest

- All other generals forward the

received commands to all other

generals

- Every generals computes the

majority decision of the received

commands and follows this

command Evildoer

General A: Attack!

A: Attack

B: Attack

C: Attack

D: Attack

A: Attack

B: Wait

C: Attack

D: Attack
don‘t care!

A

B

D

C

38

Byzantine Agreement

 Theorem

- The problem of four byzantine

generals can be solved

(without cryptography)

 Algorithm

- General A sends his command

to all other generals

• A sticks to his command if he is

honest

- All other generals forward the

received command to all other

generals

- Every generals computes the

majority decision of the

received commands and

follows this command Evildoer

A: Wait

B: Wait

C: Wait

D: Attack

A: Attack

B: Wait

C: Wait

D: Attack
General A: Confuse!

A: Wait

B: Wait

C: Wait

D: Attack

A

B C

D

39

General Solution of Byzantine

Agreement

 Theorem

- If m generals are traitors then 2m+1 generals must be honest to

get a Byzantine Agreement

 This bound is sharp if one does not rely on

cryptography

 Theorem

- If a digital signature scheme is working, then an arbitrarily large

number of betraying generals can be dealt with

 Solution

- Every general signs his command

- All commands are shared together with the signature

- Inconsistent commands can be detected

- The evildoer can be exposed

40

P2P and Byzantine Agreement

 Digital signature can solve the problem of malign peers

 Problem: Number of messages

- O(n2) messages in the whole network (for n peers)

 In „Scalable Byzantine Agreement“ von Clifford Scott

Lewis und Jared Saia, 2003

- a scalable algorithm was presented

- can deal with n/6 evil peers

• if they do not influence the network structure

- use only O(log n) messages per node in the expectation

- find agreement with high probability

41

Network of Lewis and Saia

 Butterfly network with clusters of

size c log n

- clusters are bipartite expander graphs

- Bipartite graph

• is a graph with disjoint node sets A and

B where no edges connect the nodes

within A or within B

- Expander graph

• A bipartite graph is an expander graph

if for each subset X of A the number of

neighbors in B is at least c|X| for a

fixed constant c>0

• and vice versa for the subsets in B

A

B

42

Discussion

 Advantage

- Very efficient, robust and simple method

 Disadvantage

- Strong assumptions

• The attacker does not know the internal network structure

 If the attacker knows the structure

- Eclipse attack!

43

Cuckoo Hashing for Security

 Awerbuch, Scheideler, Towards Scalable and Robust Overlay Networks

 Problem:

- Rejoin attacks

 Solution:

- Chord network combined with

- Cuckoo Hashing

- Majority condition:

• honest peers in the neighborhood are in the majority

- Data is stored with O(log n) copies

44

Cuckoo Hashing

 Collision strategy for (classical) hashing

- uses two hash functions h1, h2

- an item with key x is either stored at h1(x) or h2(x)

• easy lookup

 Insert x

- try inserting at h1(x) or h2(x)

- if both positions are occupied then

• kick out one element

• and insert it at its other place

• continue this with the next element if the position is

occupied

45

From Cuckoo Hashing
Rasmus Pagh, Flemming Friche Rodler

2004

Efficiency of Cuckoo Hashing

 Theorem

- Let ϵ>0 then if at most n elements are stored, then Cuckoo Hashing needs

a hash space of 2n+ϵ.

 Three hash functions increase the load factor from 1/2 to 91%

 Insert

- needs O(1) steps in the expectation

- O(log n) with high probability

 Lookup

- needs two steps

46

Chord

 Ion Stoica, Robert Morris,

David Karger, M. Frans

Kaashoek and Hari

Balakrishnan (2001)

 Distributed Hash Table

- range {0,..,2m-1}

- for sufficient large m

 for this work the range is

seen as [0,1)

 Network

- ring-wise connections

- shortcuts with exponential

increasing distance

47

Lookup in Chord

48

Data Structure of Chord

 For each peer

- successor link on the ring

- predecessor link on the ring

- for all i ∈ {0,..,m-1}

• Finger[i] := the peer following

the value rV(b+2i)s

 For small i the finger

entries are the same

- store only different entries

 Chord

- needs O(log n) hops for lookup

- needs O(log2 n) messages for

inserting and erasing of peers

49

Cuckoo Hashing for Security

 Given n honest peers and ϵ n dishonest peers

 Goal

- For any adversarial attack the following properties for

every interval I ⊆ [0, 1) of size at least (c log n)/n we have

- Balancing condition

• I contains Θ(|I| · n) nodes

- Majority condition

• the honest nodes in I are in the majority

 Then all majority decisions of O(log n) nodes give

a correct result

50

Rejoin Attacks

 Secure hash functions for positions in the Chord

- if one position is used

- then in an O(log n) neighborhood more than half is honest

- if more than half of al peers are honest

 Rejoin attacks

- use a small number of attackers

- check out new addresses until attackers fall in one interval

- then this neighborhood can be ruled by the attackers

51

The Cuckoo Rule for Chord

 Notation

- a region is an interval of size 1/2r in [0, 1) for some integer r that starts at an

integer multiple of 1/2r

- There are exactly 2r regions

- A k-region is a region of size (closest from above to) k/n, and for any point x ∈ [0,

1)

- the k-region Rk(x) is the unique k-region containing x.

 Cuckoo rule

- If a new node v wants to join the system, pick a random x ∈ [0, 1).

- Place v into x and move all nodes in Rk(x) to points in [0, 1) chosen uniformly at

random

• (without replacing any further nodes).

 Theorem

- For any constants ϵ and k with ϵ < 1−1/k, the cuckoo rule with parameter k

satisfies the balancing and majority conditions for a polynomial number of rounds,

with high probability, for any adversarial strategy within our model.

- The inequality ϵ < 1 − 1/k is sharp

52

Operations

 Data storage

- each data item is stored in the O(log3 n) neighborhood as copies

 Primitives

- robust hash functions

• safe against attacks

- majority decisions of each operation

- use multiple routes for targeting location

53

Efficiency

 Lookup

- works correctly with high probability

- can be performed with O(log5n) messages

 Inserting of data

- works in polylogarithmic time

- needs O(log5 n) messages

 Copies stored of each data: O(log3n)

54

Discussion

 Advantage

- Cuckoo Chord is safe against adversarial attacks

- Cuckoo rule is simple and effective

 Disadvantage

- Computation of secure hash function is complex

- Considerate overhead for communication

 Theoretical breakthrough

 Little impact to the practical world

55

Peer-to-Peer Networks
14 Security

Christian Ortolf
Technical Faculty

Computer-Networks and Telematics

University of Freiburg

