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1. Clayton Tunnel protocol
Try to fix the Clayton Tunnel protocol so that the 

semaphore is not reset as long as there is a train in the 
tunnel.

2. Lynch's Protocol
Try to fix the duplication problem in Lynch's protocol. 
When can a character be accepted though the two 
preceding messages transmissions were  erroneous?
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tunnel

train in tunnel

train

tunnel

tunnel clear

train

set

reset

train in tunnel
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GREEN
entry/
setSignal(green)
counter = 0

train left tunnel

train  enters

[counter == 0]

[counter > 0]

counter--

Exit

IDLE

train left tunnel

train  leaves

Idea: count the trains in the tunnel

train 
enters RED

entry/
setSignal(red)

train in tunnel

counter++



Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 1

‣ On the entry side the signalman maintains a counter for 
the trains that enter the tunnel

‣ The signal will be reset to green only if enough 
corresponding “train left tunnel” messages arrived.

‣ It covers the situation that a train enters the tunnel though 
the signal is red (or the signalman waves the red flag)

‣ Drawback: If a “train left tunnel” message gets lost, the 
counter will not reach 0 and the signal will stay red.

5



Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 2: Lynch’s Protocol (extended)

6

accept 
char

accept 
char

NACKERR

get next 
char receive get next 

charACK

NACK

ACK

ACK

start [ERR]

fake error message, sent by 
one of the terminals

Terminal A Terminal B

msg error ack msg error ack

--

a

a

[ERR]

ERR

OK

ACK

(ACK)

NACK

x

x

x

OK

ERR

OK

NACK

(NACK)

ACK

accept x

accept x
accept a

ACK(x) is lost
retransmit x

initiate

Example for the 
duplication problem:
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MSG(contents) = message(contents)
ERR = error message
CR = character received
CT = character to transmit
VR = verify bit (received)
VT = verify bit (to transmit)
AR = alternating bit (received)
AT = alternating bit (transmitted)

MSG(CT,VT,AT)

MSG(CR,VR,AR)

receive

VT := 0

alt=AR ? accept CR;
alt := AR

VR=1 ? CT := next char;
AT = !AT

ERR

yes

no

yes

no

VT := 1

alt:=0; AT:=1

start

Solution with verify bit and alternating bit 
[Lynch 1969]
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The alternating bit protocol 
[Bartlett, Scantleburst, Wilkinson 1969]

q0

q2q1

q4q3

q5

!msg,0

!msg,1

?msg,1
?err

?msg,0

!msg,0

?msg,1

!msg,1?msg,0
?err

Terminal A

q0

q1 q2

q3 q4

q5

!msg,0

!msg,1

?msg,0
?err

?msg,0

!msg,0

?msg,1

!msg,1 ?msg,1
?err

Terminal B

I/O

I/O I/O

I/O

Notation: ! = send, ? = receive, 
“msg,0” = message with 0 bit appended
I/O = accept message, fetch new message
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The alternating bit protocol 
[Bartlett, Scantleburst, Wilkinson 1969]

q0

q2q1

q4q3

q5

!msg,0

!msg,1

?msg,1
?err

?msg,0

!msg,0

?msg,1

!msg,1?msg,0
?err

Terminal A

q0

q1 q2

q3 q4

q5

!msg,0

!msg,1

?msg,0
?err

?msg,0

!msg,0

?msg,1

!msg,1 ?msg,1
?err

Terminal B

I/O

I/O I/O

I/O

normal
operation

retransmit
after error

retransmit
after error


