
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

Exercise 1

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1

1. Clayton Tunnel protocol
Try to fix the Clayton Tunnel protocol so that the

semaphore is not reset as long as there is a train in the
tunnel.

2. Lynch's Protocol
Try to fix the duplication problem in Lynch's protocol.
When can a character be accepted though the two
preceding messages transmissions were erroneous?

2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Clayton Tunnel protocol

3

tunnel

train in tunnel

train

tunnel

tunnel clear

train

set

reset

train in tunnel

Entry Exit

Entry

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 1

4

GREEN
entry/
setSignal(green)
counter = 0

train left tunnel

train enters

[counter == 0]

[counter > 0]

counter--

Exit

IDLE

train left tunnel

train leaves

Idea: count the trains in the tunnel

train
enters RED

entry/
setSignal(red)

train in tunnel

counter++

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 1

‣ On the entry side the signalman maintains a counter for
the trains that enter the tunnel

‣ The signal will be reset to green only if enough
corresponding “train left tunnel” messages arrived.

‣ It covers the situation that a train enters the tunnel though
the signal is red (or the signalman waves the red flag)

‣ Drawback: If a “train left tunnel” message gets lost, the
counter will not reach 0 and the signal will stay red.

5

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 2: Lynch’s Protocol (extended)

6

accept
char

accept
char

NACKERR

get next
char receive get next

charACK

NACK

ACK

ACK

start [ERR]

fake error message, sent by
one of the terminals

Terminal A Terminal B

msg error ack msg error ack

--

a

a

[ERR]

ERR

OK

ACK

(ACK)

NACK

x

x

x

OK

ERR

OK

NACK

(NACK)

ACK

accept x

accept x
accept a

ACK(x) is lost
retransmit x

initiate

Example for the
duplication problem:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 2

7

MSG(contents) = message(contents)
ERR = error message
CR = character received
CT = character to transmit
VR = verify bit (received)
VT = verify bit (to transmit)
AR = alternating bit (received)
AT = alternating bit (transmitted)

MSG(CT,VT,AT)

MSG(CR,VR,AR)

receive

VT := 0

alt=AR ? accept CR;
alt := AR

VR=1 ? CT := next char;
AT = !AT

ERR

yes

no

yes

no

VT := 1

alt:=0; AT:=1

start

Solution with verify bit and alternating bit
[Lynch 1969]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 2

8

The alternating bit protocol
[Bartlett, Scantleburst, Wilkinson 1969]

q0

q2q1

q4q3

q5

!msg,0

!msg,1

?msg,1
?err

?msg,0

!msg,0

?msg,1

!msg,1?msg,0
?err

Terminal A

q0

q1 q2

q3 q4

q5

!msg,0

!msg,1

?msg,0
?err

?msg,0

!msg,0

?msg,1

!msg,1 ?msg,1
?err

Terminal B

I/O

I/O I/O

I/O

Notation: ! = send, ? = receive,
“msg,0” = message with 0 bit appended
I/O = accept message, fetch new message

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exercise 1, Task 2

9

The alternating bit protocol
[Bartlett, Scantleburst, Wilkinson 1969]

q0

q2q1

q4q3

q5

!msg,0

!msg,1

?msg,1
?err

?msg,0

!msg,0

?msg,1

!msg,1?msg,0
?err

Terminal A

q0

q1 q2

q3 q4

q5

!msg,0

!msg,1

?msg,0
?err

?msg,0

!msg,0

?msg,1

!msg,1 ?msg,1
?err

Terminal B

I/O

I/O I/O

I/O

normal
operation

retransmit
after error

retransmit
after error

