

Network Protocol Design and Evaluation

Exercise 2

Stefan Rührup

University of Freiburg Computer Networks and Telematics

Summer 2009

Exercise 2

1. UML diagrams

Specifiy the alternating bit protocol in UML using an appropriate diagram type. In which state does the protocol start? Give an example for a message exchange between two terminals and present it in UML.

2. Alternating Bit Protocol

Prove that the alternating bit protocol works correctly, i.e. no message is lost and no duplicates are accepted.

The Alternating Bit Protocol

Notation: ! = send, ? = receive, "msg,0" = message with 0 bit appended I/O = accept message, fetch new message

[Bartlett, Scantleburst, Wilkinson 1969]

UML state chart of the Alternating Bit Protocol. The counterpart ABP' is defined analogously.

- To show: every message fetched by A is
 (a) received at least once by B
 (b) accepted at most once by B
- We start in q₂,q₂ where A fetches a message and begins with alternating bit = 0. B waits for this message.

(we do not consider initialization here)

- (a) ... received at least once by B
- A sends msg,0
 - B receives msg, $0 \rightarrow ok$, received
 - B receives err \rightarrow state q₁, i.e.
 - B sends msg,1 until msg,0 arrives
 - A receives msg,1 (or err) and retransmits msg,0
 i.e. it is retransmitted until B receives it

- (b) ... accepted at most once by B
- ▶ B receives msg,0 and answers with msg,0 (q₅)
 - A receives msg,0, switches to q₅ and fetches a new message (no duplicate after this point).
 - A receives err and sends msg,0 again
 - B can only accept the next character if msg,1 arrives (not a duplicate)

