
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

Exercise 5

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1

Task 1 Dijkstra’s Semaphore

Consider the Promela model for Dijkstra’s Semaphore from the
lecture.

1. Warm-up (your homework!)

• Make yourself familiar with SPIN. Run a simulation and
generate a sequence chart using XSPIN or spin with the
command line parameters -c or -M.

• Build a verifier and compile it using the cc parameters -
DNOREDUCE and -DNP

• Check for non-progress cycles.

2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The (binary) Semaphore

3

mtype {p,v}

chan sema = [0] of {mtype}

active proctype Semaphore() {
 do
 :: sema!p -> sema?v
 od
}

active [3] proctype user() {
 do
 :: sema?p; /* enter critical section */
 skip; /* critical section */
 sema!v; /* leave critical section */
 od
}

semaphore.pml

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.2

4

Task 1.2

Insert a correctness claim stating that at most one process can
enter its critical section at any time. What do you use, assertions,
meta-labels or a never-claim? Check the correctness with SPIN.

We use a never claim stating that it can never happen that

 - user 1 and user 2 are at the same time in a critical section, or

 - user 1 and user 3 are at the same ...

 - user 2 and user 3 ...

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.2

5

mtype {p,v}

chan sema = [0] of {mtype}

active proctype Semaphore() {
end: do
 :: sema!p ->
progress: sema?v
 od
}

active [3] proctype user() {
 do
 :: sema?p; /* enter critical section */
critical: skip; /* critical section */
 sema!v; /* leave critical section */
 od
}

never {
 do
 :: user[1]@critical && user[2]@critical -> break
 :: user[2]@critical && user[3]@critical -> break
 :: user[1]@critical && user[3]@critical -> break
 :: else
 od
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.3

6

Task 1.3

Extend the semaphore such that an arbitrary fixed number of
processes can enter their critical section at any time.

We use a counter to store the number of processes that are
allowed to enter (number of permits)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.3

7

mtype {p,v}

chan sema = [0] of {mtype}

active proctype Semaphore() {
 byte count = 1;
end: do
 :: (count >= 1) -> sema!p;
 assert(count >= 1);
 count = count - 1;
 :: (count == 0) -> sema?v;
 count = count + 1;
 od }

active [3] proctype user() {
 do
 :: sema?p; /* enter critical section */
critical: skip; /* critical section */
 sema!v; /* leave critical section */
 od }

never {
 do
 :: user[1]@critical && user[2]@critical -> break
 :: user[2]@critical && user[3]@critical -> break
 :: user[1]@critical && user[3]@critical -> break
 :: else
 od }

for a correctness
check we can use
an assertion

the never claim is still tailored
to the binary (mutex) version!

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.3

‣ The correctness property is specified by the assertion
 assert(count >= 1);

when setting the semaphore

‣ When using an initial counter > 1, the old never claim is
violated (it was tailored to the mutex variant)

‣ Otherwise SPIN reports no errors

8

>spin -a semaphore2.pml
>cc pan.c -o pan -DNOREDUCE
>./pan

pan: claim violated! (at depth 11)
pan: wrote semaphore2.pml.trail

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.4

9

Task 1.4

Implement a semaphore without a semaphore process by using
only a channel. Validate your model.

Idea: whenever a process enters its critical section, it posts a
message on a channel and receives (removes) the message upon
leaving the critical section. Other processes will be blocked as
long as the channel is full.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.4

10

mtype {p}

chan sema = [1] of {mtype}

active [3] proctype user() {
 do
 :: sema!p; /* enter critical section */
critical: skip; /* critical section */
 sema?p; /* leave critical section */
 od
}

never {
 do
 :: user[1]@critical && user[2]@critical -> break
 :: user[2]@critical && user[3]@critical -> break
 :: user[1]@critical && user[3]@critical -> break
 :: else
 od
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2

11

Task 2

1. Change the Promela model of the lower layer such that
messages might get lost.

2. Extend the communication protocol such that messages are
retransmitted after they were lost. Simulate and verify your
protocol.

3. Extend your protocol such that it also works when messages
are delivered out of order (introduce sequence numbers).
Extend the channel model. Simulate and verify your protocol.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.1

12

proctype lower_layer(chan fromS, toS, fromR, toR)
{ byte d; bit b;

 do
 ::fromS?data(d,b) ->
 if
 ::toR!data(d,b) /* correct */
 ::toR!error(0,0) /* distorted */
 ::skip /* lost */
 fi
 ::fromR?ack(b) ->
 if
 ::toS!ack(b)
 ::toS!error(0)
 ::skip
 fi
 od
}

‣ To model message loss we can simply add a skip
statement after receiving a message in the lower layer

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.2

13

proctype Sender(chan in, out)
{ byte mt; /* message data */
 bit at; /* alternation bit transmitted */
 bit ar; /* alternation bit received */

 FETCH; /* get a new message */
 out!data(mt,at); /* send it */
 do
 ::in?ack(ar) -> /* await response */
 if
 ::(ar == at) -> /* correct send */
 FETCH; /* get a new message */
 at=1-at /* toggle bit */
 ::else -> /* there was a send error */
 skip /* don’t fetch */
 fi;
 out!data(mt,at)
 ::in?error(ar) -> /* recv error */
 out!data(mt,at)
 ::timeout -> /* no ack received */
 out!data(mt,at) /* -> retransmit */
 od
}

‣ In the sender process, we retransmit a message after timeout:

Spin Version 5.1.7 !! 23 December 2008 !! alternating2.pml !! MSC !! 1

0 0::init:
1 1:Sender

2 2:Receiver

3 3:lower_layer

5 out!3,1,0

7 fromS?3,1,0

8 toR!1,0,0

10 in?1,0,0

11 out!2,1

14 fromR?2,1

17 timeout

19 out!3,1,0

20 fromS?3,1,0

22 toR!1,0,0

25 in?1,0,0

26 out!2,1

28 fromR?2,1

31 timeout

33 out!3,1,0

35 fromS?3,1,0

36 toR!1,0,0

37 in?1,0,0

39 out!2,1

42 fromR?2,1

43 toS!1,0

44 in?1,0

47 out!3,1,0

49 fromS?3,1,0

50 toR!1,0,0

51 in?1,0,0

53 out!2,1

56 fromR?2,1

59 timeout

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.2

14

Simulation trace
generated with
spin -M -u45 alternating2.pml

lost message

retransmission

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.2

15

>spin -a alternating2.pml
>cc pan.c -o pan -DNOREDUCE -DSAFETY
>./pan -n

(Spin Version 5.1.7 -- 23 December 2008)

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 cycle checks - (disabled by -DSAFETY)
 invalid end states +

State-vector 88 byte, depth reached 205, errors: 0
 2256 states, stored
 1323 states, matched
 3579 transitions (= stored+matched)
 2 atomic steps
hash conflicts: 2 (resolved)

 2.658 memory usage (Mbyte)

pan: elapsed time 0 seconds
>

Validation: check for assertion violations

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.3

16

‣ Channel with reordering (changes to alternating.pml):

proctype lower_layer(chan fromS, toS, fromR, toR)
{ byte d; byte s;

 do
 ::fromS?data(d,s) ->
 if
 ::toR!data(d,s) /* correct */
 ::skip /* lost */
 ::fromS!data(d,s) /* reorder */
 fi
 ::fromR?ack(s) ->
 if
 ::toS!ack(s)
 ::skip
 ::fromR!ack(s)
 fi
 od
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.3

17

‣ Retransmission after timeout: Promela’s global timeout applies if
no statement is executable, including receive statements, i.e. if all
queues are empty. This maintains the order of the messages.

‣ We model timer expiry by an unconditional retransmission.
(Remember, that there is no timing in promela models)

proctype Sender(chan in, out) {
 ...
 do
 ::in?ack(..) -> ...
 ::timeout -> out!data(mt,at)
 od
}

proctype Sender(chan in, out) {
 ...
 do
 ::in?ack(..) -> ...
 ::true -> out!data(mt,at)
 od
}

global timeout!

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.3

18

proctype Sender(chan in, out)
{ byte mt; /* message data */
 byte st=1; /* sequence number transmitted */
 byte sr; /* sequence number received */

 FETCH; /* get a new message */
 out!data(mt,st); /* send it */
 do
 ::in?ack(sr) -> /* await response */
 if
 ::(sr == st) -> /* correct send */
 FETCH; /* get a new message */
 st = (st+1)%MAXSN /* increase sequence number */
 ::else -> /* there was a send error */
 skip /* don’t fetch */
 fi;
 out!data(mt,st)
 ::true ->
 out!data(mt,st)
 od
}

The sender process:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.3

19

proctype Receiver(chan in, out)
{ byte mr; /* message data received */
 byte last_mr; /* mr of last error-free msg */
 byte sr; /* sequence number received */
 byte last_sr=0; /* sr of last error-free msg */

 do
 ::in?data(mr,sr) ->
 out!ack(sr);
 if
 ::(sr != (last_sr+1)%MAXSN) ->
 skip
 ::(sr == (last_sr+1)%MAXSN) ->
 ACCEPT;
 last_sr=sr;
 last_mr=mr
 fi
 od
}

The receiver process:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.3

20

#define N 4
#define MAX 16
#define MAXSN 16
#define FETCH mt = (mt+1)%MAX
#define ACCEPT printf("ACCEPT %d\n", mr); assert(mr==(last_mr+1)%MAX)

mtype = {data, ack}

Some definitions

... and the channel declarations:

 chan fromS = [N] of { byte, byte, byte };
 chan toR = [N] of { byte, byte, byte };
 chan fromR = [N] of { byte, byte };
 chan toS = [N] of { byte, byte };

(The rest remains the same)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.3

‣ Simulation gives no errors

‣ Unfortunately the model is too big to do a full state space search

‣ We have to restrict the number of resent messages after timeout.
Furthermore we can reduce the channel capacity, the sequence
number range, etc.

21

>spin -a alternating3.pml
>cc pan.c -o pan -DSAFETY
>./pan -nE
error: max search depth too small
Depth= 9999 States= 1e+06 Transitions= 3.05e+06 Memory=
113.243 t= 2.3 R= 4e+05
Depth= 9999 States= 2e+06 Transitions= 6.22e+06 Memory=
223.887 t= 5.03 R= 4e+05
pan: resizing hashtable to -w21.. done
Depth= 9999 States= 3e+06 Transitions= 9.41e+06 Memory=
342.141 t= 7.88 R= 4e+05
...

