
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

Exercise 6

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1

Task 1 The Pathfinder Problem

You are chief engineer at JPL and responsible
for the Mars Pathfinder Mission. After the
spacecraft has landed and released the rover,
it is expected to transmit data to the earth.
Unfortunately, the contact to the craft is lost
at unpredictable moments. You suspect an
automatic software reset after a process is
blocked. There is a process for gathering
meteorological data (low priority) and another
process that consumes data (high priority).
Both access an internal bus an use a
semaphore that restricts the access.

2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Mars Pathfinder

3

‣ Launched by NASA in Dec. 1996

‣ Landed on Mars on July 4, 1997

‣ Equipped with several instruments, e.g.
the Atmospheric Structure Instrument/
Meterology (ASI/MET) Package

‣ ‘Low cost mission’: < $150 Million

Picture Credit: NASA
http://marsprogram.jpl.nasa.gov/

The ASI/MET system

Picture Credit: NASA

http://marsprogram.jpl.nasa.gov
http://marsprogram.jpl.nasa.gov

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Pathfinder System (1)

4

Picture Credit: NASA
http://marsprogram.jpl.nasa.gov/

VME bus

1553 bus

CPU Radio Camera

Simplified system overview:

Thrusters
Valves
Sun sensor

Star scanner

Accelerom
eters

Radar altim
eter

ASI/M
ET

cruise stage partlander part

http://marsprogram.jpl.nasa.gov
http://marsprogram.jpl.nasa.gov

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Pathfinder System (2)

‣ Data exchange on the 1553 bus:

• Instruments, e.g. ASI/MET (low priority)

• Data distribution process “bc_dist” (high priority)

• Both share a resource (guarded by a semaphore)

5

bc_dist

ASI/MET

time

bc_dist

ASI/MET

Normal operation

data transfer

data distribution

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Promela Model

6

mtype = { free, busy, idle, waiting, running };

show mtype h_state = idle;
show mtype l_state = idle;
show mtype mutex = free;

active proctype high() /* can run at any time */
{
end: do
 :: h_state = waiting;
 atomic { mutex == free -> mutex = busy };
 h_state = running;

 /* critical section - consume data */

 atomic { h_state = idle; mutex = free }
 od
}

active proctype low() provided (h_state == idle)
{ /* scheduling rule */
end: do
 :: l_state = waiting;
 atomic { mutex == free -> mutex = busy};
 l_state = running;

 /* critical section - produce data */

 atomic { l_state = idle; mutex = free }
 od
}

pathfinder.pml (see SPIN’s example directory)

bc_dist

ASI/MET

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.1

7

‣ Verification (check for invalid end states):

>spin -a pathfinder.pml
>cc pan.c -o pan
>./pan
pan: invalid end state (at depth 3)
pan: wrote pathfinder.trail

(Spin Version 5.1.7 -- 23 December 2008)
Warning: Search not completed
 + Partial Order Reduction

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 acceptance cycles - (not selected)
 invalid end states +

State-vector 20 byte, depth reached 4, errors: 1
 5 states, stored
 1 states, matched
 6 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)

Task 1.1: Analyse the model with SPIN

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.1

8

‣ Guided simulation:

>spin -t -p pathfinder.pml
>Starting low with pid 0
Starting high with pid 1
 1: proc 0 (low) line 27 "pathfinder" (state 1) [l_state = waiting]
 2: proc 0 (low) line 28 "pathfinder" (state 2) [((mutex==free))]
 2: proc 0 (low) line 28 "pathfinder" (state 3) [mutex = busy]
 2: proc 0 (low) line 29 "pathfinder" (state 4) [l_state = running]
 3: proc 1 (high) line 43 "pathfinder" (state 1) [h_state = waiting]
spin: trail ends after 3 steps
#processes: 2
 h_state = waiting
 l_state = running
 mutex = busy
 3: proc 1 (high) line 44 "pathfinder" (state 5)
 3: proc 0 (low) line 33 "pathfinder" (state 8)
2 processes created

deadlock

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg9

‣ Checking for livelocks:

First we set a progress state label

...

active proctype low() provided (h_state == idle)
{ /* scheduling rule */
end: do
 :: l_state = waiting;
 atomic { mutex == free -> mutex = busy};
progress: l_state = running;

 /* critical section - produce data */

 atomic { l_state = idle; mutex = free }
 od
}

...

Task 1.1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg10

‣ Check for non-progress cycles (without fairness):

>spin -a pathfinder.pml
>cc pan.c -o pan -DNP
>./pan -l
pan: non-progress cycle (at depth 2)
pan: wrote pathfinder.trail

(Spin Version 5.1.7 -- 23 December 2008)
Warning: Search not completed
 + Partial Order Reduction

Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness disabled)
 invalid end states - (disabled by never claim)

State-vector 24 byte, depth reached 9, errors: 1
 5 states, stored
 0 states, matched
 5 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)

Task 1.1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg11

‣ Guided simulation:

>spin -t -p pathfinder.pml
Starting low with pid 0
Starting high with pid 1
spin: couldn't find claim (ignored)
 2: proc 1 (high) line 43 "pathfinder" (state 1) [h_state = waiting]
 <<<<<START OF CYCLE>>>>>
 4: proc 1 (high) line 44 "pathfinder" (state 2) [((mutex==free))]
 4: proc 1 (high) line 44 "pathfinder" (state 3) [mutex = busy]
 6: proc 1 (high) line 45 "pathfinder" (state 5) [h_state = running]
 8: proc 1 (high) line 49 "pathfinder" (state 6) [h_state = idle]
 8: proc 1 (high) line 49 "pathfinder" (state 7) [mutex = free]
 10: proc 1 (high) line 43 "pathfinder" (state 1) [h_state = waiting]
spin: trail ends after 10 steps
#processes: 2
 h_state = waiting
 l_state = idle
 mutex = free
 10: proc 1 (high) line 44 "pathfinder" (state 4)
 10: proc 0 (low) line 26 "pathfinder" (state 10) <valid end state>
2 processes created
>

There is a cycle
where the low
priority process
is suppressed

Task 1.1

(can happen
without fairness!)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg12

‣ Check for non-progress cycles again, with fairness:

>spin -a pathfinder.pml
>cc pan.c -o pan -DNP
>./pan -l -f

(Spin Version 5.1.7 -- 23 December 2008)
 + Partial Order Reduction

Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness enabled)
 invalid end states - (disabled by never claim)

State-vector 24 byte, depth reached 20, errors: 0
 22 states, stored (33 visited)
 20 states, matched
 53 transitions (= visited+matched)
 0 atomic steps
hash conflicts: 0 (resolved)

...

Task 1.1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Pathfinder Problem

‣ The problem: Priority Inversion
ASI/MET can be preempted by a higher priority process

while still holding the semaphore. This leads to a deadlock.

13

time

ASI/MET

Error case

ASI/MET asks
for semaphore
(succesful)

ASI/MET is
preempted

bc_dist

Scheduler detects that
bc_dist is still running
→ system reset

bc_dist asks
for semaphore
and is blocked

line 0

line 44

line 45

line 49

 h_state = idle

 ((mutex==free))

 h_state = running

 h_state = waiting

line 0

line 28

line 29

line 33

 l_state = idle

 ((mutex==free))

 l_state = running

 l_state = waiting

tate 9 line 26 is a loopstate

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.2

‣ Describe the processes in form of automata.

Generated with XSPIN:

14

Process states:
 idle
 waiting
 running

this guard statement
leads to an additional
state that does not
have to be considered

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.2

‣ Derive the complete state space for the two processes and the
mutex state.

15

[Holzmann 2003]

idle,idle,free

wait,idle,free

wait,idle,busy

run,idle,busy

wait,wait,free

wait,wait,busy

run,wait,busy

idle,wait,free

idle,wait,busy

idle,run,busywait,run,busy

wait,wait,busy

State description: (high, low, mutex state)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.2

‣ Deadlock states:

16

[Holzmann 2003]

idle,idle,free

wait,idle,free

wait,idle,busy

run,idle,busy

wait,wait,free

wait,wait,busy

run,wait,busy

idle,wait,free

idle,wait,busy

idle,run,busywait,run,busy

wait,wait,busy

State description: (high, low, mutex state)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 1.2

‣ Non-progress cycles of the low priority process:

17

[Holzmann 2003]

idle,idle,free

wait,idle,free

wait,idle,busy

run,idle,busy

wait,wait,free

wait,wait,busy

run,wait,busy

idle,wait,free

idle,wait,busy

idle,run,busywait,run,busy

wait,wait,busy

State description: (high, low, mutex state)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Solution of the Problem (1)

18

‣ Changes: The low priority process keeps on running once
it enters the critical section

...

active proctype low() provided (h_state == idle)
{ /* scheduling rule */
end: do
 :: (h_state == idle) -> l_state = waiting;
 (h_state == idle) -> atomic { mutex == free -> mutex = busy};
progress: (h_state == idle) -> l_state = running;

 /* critical section - produce data */

 (h_state == idle) -> atomic { l_state = idle; mutex = free }
 od
}

...

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Solution of the Problem (2)

‣ General solution: Priority Inheritance

If a process blocks a higher priority process, it inherits the
priority of the blocked process.

19

time

ASI/MET

ASI/MET asks
for semaphore
(succesful)

ASI/MET is
preempted

bc_dist

ASI/MET successfully
terminates, bc_dist as well

bc_dist asks
for semaphore
and is blocked

Inheritance of
higher priority

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

More Information

‣ Glenn Reeves: “What really happened on Mars”
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/19020/1/98-0192.pdf

‣ Mike Jones’ page on the pathfinder problem
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/

‣ The Priority Inversion Problem
http://en.wikipedia.org/wiki/Priority_inversion (see References therein)

‣ The validation model:
G.J. Holzmann, “Designing Executable Abstractions”, 2nd Workshop on

Formal Methods in Software Practice, 1998, pp.103-108.
G.J. Holzmann, “The SPIN Model Checker”, Addison-Wesley, 2003

20

http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/
http://en.wikipedia.org/wiki/Priority_inversion
http://en.wikipedia.org/wiki/Priority_inversion

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2

Task 2 LTL and Never Claims

1. Specify the recurrence of a property p in LTL. Describe the
Büchi automaton for the negated formula and give the
corresponding never claim.

2. You want to check an invariant property p, but you have already
used the never claim. You define another process by

active proctype invariant() {
 do :: assert(p) od

}

What is the problem of this solution (hint: think of timeouts)?
Is there an alternative?

21

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2

Task 2.1 Specify the recurrence of a property p in LTL.

Recurrence: ◻◊p (Always eventually p, see templates)

Describe the Büchi automaton for the negated formula and give
the corresponding never claim.
¬◻◊p ≡ ◊¬◊p ≡ ◊◻¬p

22

s1s0

¬p
¬p

true

Automaton for ◊◻¬p

never {
S0_init:
 if
 :: (!(p)) -> goto accept_S1
 :: true -> goto S0_init
 fi;
accept_S1:
 if
 :: (!(p)) -> goto accept_S1
 fi;
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.2

Task 2.2 You want to check an invariant property p, but you have

already used the never claim. You define another process by

active proctype invariant() {
 do :: assert(p) od

}

What is the problem of this solution?

The invariant process is always executable. Thus, deadlocks will
remain undetected and timeout statements (if used) become never
executable.

23

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Task 2.2

Task 2.2 ... Is there an alternative?

The straightforward modification is the following. We leave out the
do loop:

active proctype invariant() {
 assert(p)

}

This adds unnecessary overhead, because the validator has to
check two steps (valid assertion and process termination) instead
of one. A better alternative is to guard the assertion:

active proctype invariant() {
 atomic { !p -> assert(p) }
}

24

[http://spinroot.com/spin/Man/invariance.html]

http://spinroot.com/spin/Man/invariance.html
http://spinroot.com/spin/Man/invariance.html

