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Overview

‣ In the last chapter:

• The development process (overview)

‣ In this chapter:

• Specification 

• State machines and modeling languages

• UML state charts and sequence diagrams

• SDL and MSC (Part II)
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What are we modeling?
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Transitional Systems Reactive Systems

input-output transformation event-driven

e.g. scientific computation, compilers e.g. communication protocols, 
operating systems, control systems

correctness criteria:
 - termination
 - correctness of input-output
   transformation

correctness criteria:
 - non-termination under normal 
conditions
 - correctness of event-response actions

[S. Leue, Design of Reactive Systems, Lecture Notes, 2002]

formal models describe event-response 
sequences, including state information



‣ A protocol interacts with the environment

• triggered by events

• responds by performing actions

• behaviour depends on the history of past events, 

i.e. the state

‣ state machines do not model the data flow, 

but the flow of control
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Specification with State Machines
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state 1
action

state 2
action

event 1

event 2
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Specification with State Machines

‣ Why state machines?

...and not programming languages?

• lack of formal semantics

• risk of overspecification

• requirements specification should be kept 
implementation-independent

5
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Finite State Machines

‣ Acceptors (sequence detectors)

• produce a binary output (yes/no) on an input sequence

• accept regular languages

‣ Transducers 

• Mealy machines (output determined on current state 
and input)

• Moore machines (output determined on current state)

• both models are equivalent

6
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Mealy Machines, Example
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transition
input / output

state

State In Out Next 
state

q0 0 0 q1

q0 1 1 q0

q1 0 0 q2

q1 1 0 q1

q2 0 1 q2

q2 1 1 q0

state diagram state transition table



Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Definition of a Mealy machine

‣ A Mealy state machine is a tuple (Q,q0,I,O,T,G), where 

• Q is a finite, non-empty set of states, 

• q0 ∈ Q is the initial state, 

• I is a finite set called the input alphabet, 

• O is a finite set called the output alphabet,

• T is a transition function, T: S × I  → S, and

• G is an output function, G: S × I → O.

8
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Limitations of FSMs

‣ No data variables

variable values and changes have to be coded into the 
state space
→ exponential state space explosion

9

dial 0lift 
receiver

q0 q20

q21

q22
dial 2

q1

dial 0

q30

q31

dial 1

q32
dial 2

Example: dialing a 
telephone number
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Limitations of FSMs

‣ Problem with finite memory: 

• finite variable range

• problem when modeling communication channels:

- size of the channel unknown

- determining buffer size = overspecification

10
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Limitations of FSMs

‣ Problem with concurrent FSMs

• no communication channels

• no synchronization

• composition of interacting FSMs leads to new states
and an explosion of the state space

‣ Communication protocols can be seen as concurrent state 

machines

11
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Limitations of FSMs

‣ Missing abstraction, missing composition

12

Idle

Dial Tone
lift receiver / 
play dial tone

Dialing

Connecting

RingingTalking

dial digit
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dial digit [valid] / 
connect

Busy
connected

busy

dial digit

hang up

callee
answers

here, a group transition
could be used

dialed number has to 
be coded into states!
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State machines for specification

‣ Original FSMs are not suitable for modeling and specifying 
processes in distributed systems

‣ Extended state machine models:

• Communicating Finite State Machines

• Harel statecharts (superstates, concurrent states)

• Extended Finite State Machines (variables, operations, 
conditions)

• Basis for many practical modeling and specification 
languages such as SDL, UML.

13
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Description Languages: 
Structure vs. Behaviour

‣ Structural languages: 

• describe the static, structural concept (architecture)

• e.g. class diagrams, component diagrams

‣ Behavioural languages:

• describe behaviour, i.e. activities, interaction

• e.g. state machines and sequence diagrams

14
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Description Languages: 
Constructive vs. reflective

‣ Constructive languages: 

• describe information for executing the model or for 
(executable) code generation

• e.g. state machines

‣ Reflective or assertive languages:

• describe views of the model, statically or during 
execution

• e.g. sequence diagrams

15

[D. Harel: “Some thoughts on statecharts, 13 years later”, 1996]
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Example:
TCP state transition 

diagram

16

[Wright, Stevens: “TCP/IP Illustrated, 
Volume 2: The Implementation”, 1995]



Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example:
TCP connection 
state diagram
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                              +---------+ ---------\      active OPEN  
                              |  CLOSED |            \    -----------  
                              +---------+<---------\   \   create TCB  
                                |     ^              \   \  snd SYN    
                   passive OPEN |     |   CLOSE        \   \           
                   ------------ |     | ----------       \   \         
                    create TCB  |     | delete TCB         \   \       
                                V     |                      \   \     
                              +---------+            CLOSE    |    \   
                              |  LISTEN |          ---------- |     |  
                              +---------+          delete TCB |     |  
                   rcv SYN      |     |     SEND              |     |  
                  -----------   |     |    -------            |     V  
 +---------+      snd SYN,ACK  /       \   snd SYN          +---------+
 |         |<-----------------           ------------------>|         |
 |   SYN   |                    rcv SYN                     |   SYN   |
 |   RCVD  |<-----------------------------------------------|   SENT  |
 |         |                    snd ACK                     |         |
 |         |------------------           -------------------|         |
 +---------+   rcv ACK of SYN  \       /  rcv SYN,ACK       +---------+
   |           --------------   |     |   -----------                  
   |                  x         |     |     snd ACK                    
   |                            V     V                                
   |  CLOSE                   +---------+                              
   | -------                  |  ESTAB  |                              
   | snd FIN                  +---------+                              
   |                   CLOSE    |     |    rcv FIN                     
   V                  -------   |     |    -------                     
 +---------+          snd FIN  /       \   snd ACK          +---------+
 |  FIN    |<-----------------           ------------------>|  CLOSE  |
 | WAIT-1  |------------------                              |   WAIT  |
 +---------+          rcv FIN  \                            +---------+
   | rcv ACK of FIN   -------   |                            CLOSE  |  
   | --------------   snd ACK   |                           ------- |  
   V        x                   V                           snd FIN V  
 +---------+                  +---------+                   +---------+
 |FINWAIT-2|                  | CLOSING |                   | LAST-ACK|
 +---------+                  +---------+                   +---------+
   |                rcv ACK of FIN |                 rcv ACK of FIN |  
   |  rcv FIN       -------------- |    Timeout=2MSL -------------- |  
   |  -------              x       V    ------------        x       V  
    \ snd ACK                 +---------+delete TCB         +---------+
     ------------------------>|TIME WAIT|------------------>| CLOSED  |
                              +---------+                   +---------+

[RFC 793]
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Example: TCP Sequence Diagram
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Host 1 Host 2

SYN seq=x

SYN ACK seq=y

ACK seq=x+1
DATA

FIN seq=x’

ACK

FIN seq=y

ACK

connection 
establishment

connection 
termination
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UML

‣ Unified Modeling Language

• general-purpose language for modeling 
and specification in software engineering

• in this context of particular interest:
State machines, sequence diagrams

‣ The standard: UML 2.0 Superstructure Specification
http://www.omg.org/spec/UML/2.0/

‣ see also: Lecture on Software Design, Modelling and 
Analysis in UML by Bernd Westphal, Uni Freiburg

19

http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
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As an example of state machine specialization, the states VerifyCard, OutOfService, and VerifyTransaction in the ATM 

state machine in Figure 15.42 have been specified as {final}, which means that they cannot be redefined (i.e., extended) 

in specializations of ATM. The other states can be redefined. The (verifyTransaction, releaseCard) transition has also been 

specified as {final}, meaning that the effect behavior and the target state cannot be redefined.

In Figure 15.43 a specialized ATM (which is the statemachine of a class that is a specialization of the class with the ATM 

statemachine of Figure 15.42) is defined by extending the composite state by adding a state and a transition, so that users 

can enter the desired amount. In addition a transition is added from an inherited state to the newly introduced state.

Figure 15.42 - A general state machine
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UML State Machine, Example

20

[UML Superstructure Specification v2.2]

initial 
pseudostate

transition

statename

composite
state
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States and Transitions
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StateName simple state
initial pseudostate

final state

H history pseudostate
(shallow history)

H* history pseudostate
(deep history)

StateName
entry activity
exit activity
do activity

state with 
compartment

terminate pseudostate

 event [guard] / action
transition

fork and join pseudostate
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A junction is represented by a small black circle (see Figure 15.22).

A choice pseudostate is shown as a diamond-shaped symbol as exemplified by Figure 15.23.

Figure 15.23 - Choice Pseudostate

A terminate pseudostate is shown as a cross, see Figure 15.24.

Figure 15.22 - Junction

Figure 15.24 - Terminate node
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id
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Junction pseudostates

22

[UML Superstructure Specification v2.2]

junctions realize merges or static conditional branches
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A junction is represented by a small black circle (see Figure 15.22).

A choice pseudostate is shown as a diamond-shaped symbol as exemplified by Figure 15.23.

Figure 15.23 - Choice Pseudostate

A terminate pseudostate is shown as a cross, see Figure 15.24.

Figure 15.22 - Junction

Figure 15.24 - Terminate node

[a < 0]

State1

State2 State3 State4

e1[b < 0]e2[b < 0]

State0

[a = 5]

[a > 7]

id

[>=10] [<10] [id >=10] [id <10]

id

[>=10] [<10] [id >=10] [id <10]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Choice pseudostates

23

[UML Superstructure Specification v2.2]

choices realize dynamic conditional branches
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The notation for a fork and join is a short heavy bar (Figure 15.25). The bar may have one or more arrows from source 

states to the bar (when representing a joint). The bar may have one or more arrows from the bar to states (when 

representing a fork). A transition string may be shown near the bar. 

Presentation Options

If all guards associated with triggers of transitions leaving a choice Pseudostate are binary expressions that share a 

common left operand, then the notation for choice Pseudostate may be simplified. The left operand may be placed inside 

the diamond-shaped symbol and the rest of the Guard expressions placed on the outgoing transitions. This is exemplified 

in Figure 15.26.

Figure 15.26 - Alternative Notation for Choice Pseudostate

Multiple trigger-free and effect-free transitions originating on a set of states and targeting a junction vertex with a single 

outgoing transition may be presented as a state symbol with a list of the state names and an outgoing transition symbol 

corresponding to the outgoing transition from the junction. 

Figure 15.25 - Fork and Join
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Fork and Join

24

[UML Superstructure Specification v2.2]
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Actions
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counter++

ack

msg

action

receive signal action

send signal action

ack signal receipt 
triggers a transition
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Example
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NACK(c)ERR

c := get 
next char IDLE c := get 

next charACK

NACK

ACK(c)

ACK(c)

receive signal send signal

action

Lynch’s protocol
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Composite states
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544                 UML Superstructure Specification, v2.2

An exit point is shown as a small circle with a cross on the border of the state machine diagram or composite state, with 

the name associated with it (see Figure 15.20). 

Optionally it may be placed both within the state machine diagram or composite state and outside the border of the state 

machine diagram or composite state.

Figure 15.21 illustrates the notation for depicting entry and exit points to composite states (the case of submachine states 

is illustrated in the corresponding Notation sub clause of “State (from BehaviorStateMachines, ProtocolStateMachines)” 

on page 550).

Figure 15.21 - Entry and exit points on composite states

Alternatively, the “bracket” notation shown in Figure 15.9 and Figure 15.10 on page 532 can also be used for the transition-

oriented notation.

Figure 15.20 - Exit point

abortedaborted

Sin

Scomp

entry1

exitA exitB

trA/ trB/

entry point
Example:

exit point

substate

composit
e state

[UML Superstructure Specification v2.2]
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Examples

Figure 15.33 - Composite state with two states

Figure 15.34 - Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

entry / start dial tone
exit / stop dial tone

HiddenComposite

entry / start dial tone
exit / stop dial tone
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Composite states, Example

28

[UML Superstructure Specification v2.2]
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Substate entry
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H

most recently active 
substate is restored

H*

default entry

entry point 
entry

most recently active 
substate is restored, 
also recursively in all 
sublevels

shallow history 
entry

deep history 
entry

explicit 
entry
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In Figure 15.39 the statemachine shown in Figure 15.38 on page 562 is referenced in a submachine state, and the 

presentation option with the exit points on the state symbol is shown.

An example of the notation for entry and exit points for composite states is shown in Figure 15.21 on page 544.

Notation for protocol state machines

The two differences that exist for state in protocol state machine, versus states in behavioral state machine, are as follows: 

Several features in behavioral state machine do not exist for protocol state machines (entry, exit, do); States in protocol 

state machines can have an invariant. The textual expression of the invariant will be represented by placing it after or 

under the name of the state, surrounded by square brackets.

Figure 15.40 - State with invariant - notation

Rationale

Submachine states with usages of entry and exit points defined in the corresponding state machine have been introduced 

in order for state machines with submachines to scale and in order to provide encapsulation.

Figure 15.39 - SubmachineState with usage of exit point
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Submachine states

30

[UML Superstructure Specification v2.2]

submachine

containing state machine
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A classifier may have several protocol state machines. This happens frequently, for example, when a class inherits several 

parent classes having protocol state machine, when the protocols are orthogonal. An alternative to multiple protocol state 

machines can always be found by having one protocol state machine, with sub state machines in concurrent regions.

Notation

The notation for protocol state machine is very similar to the one of behavioral state machines. The keyword {protocol} 

placed close to the name of the state machine differentiates graphically protocol state machine diagrams. 

15.3.7 ProtocolTransition (from ProtocolStateMachines)

Generalizations

• “Transition (from BehaviorStateMachines)” on page 572

Description

A protocol transition (transition as specialized in the ProtocolStateMachines package) specifies a legal transition for an 

operation. Transitions of protocol state machines have the following information: a pre-condition (guard), on trigger, and 

a post-condition. Every protocol transition is associated to zero or one operation (referred BehavioralFeature) that belongs 

to the context classifier of the protocol state machine. 

The protocol transition specifies that the associated (referred) operation can be called for an instance in the origin state 

under the initial condition (guard), and that at the end of the transition, the destination state will be reached under the final 

condition (post).

Attributes

No additional attributes

Associations

• /referred: Operation[0..*]  
This association refers to the associated operation. It is derived from the operation of the call trigger when applicable.

Figure 15.12 - Protocol state machine
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UML Protocol State Machine

31

[UML Superstructure Specification v2.2]

Example:



UML Superstructure Specification, v2.2        537

A classifier may have several protocol state machines. This happens frequently, for example, when a class inherits several 

parent classes having protocol state machine, when the protocols are orthogonal. An alternative to multiple protocol state 

machines can always be found by having one protocol state machine, with sub state machines in concurrent regions.

Notation

The notation for protocol state machine is very similar to the one of behavioral state machines. The keyword {protocol} 

placed close to the name of the state machine differentiates graphically protocol state machine diagrams. 

15.3.7 ProtocolTransition (from ProtocolStateMachines)

Generalizations

• “Transition (from BehaviorStateMachines)” on page 572

Description

A protocol transition (transition as specialized in the ProtocolStateMachines package) specifies a legal transition for an 

operation. Transitions of protocol state machines have the following information: a pre-condition (guard), on trigger, and 

a post-condition. Every protocol transition is associated to zero or one operation (referred BehavioralFeature) that belongs 

to the context classifier of the protocol state machine. 

The protocol transition specifies that the associated (referred) operation can be called for an instance in the origin state 

under the initial condition (guard), and that at the end of the transition, the destination state will be reached under the final 

condition (post).

Attributes

No additional attributes

Associations

• /referred: Operation[0..*]  
This association refers to the associated operation. It is derived from the operation of the call trigger when applicable.

Figure 15.12 - Protocol state machine
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UML Protocol State Machine

32

[UML Superstructure Specification v2.2]

initial 
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transition

precondition

event

state

keyword {protocol} differentiates 
this type of diagram

name

... but no actions!
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Protocol Transitions

‣ Notation of transitions:

‣ Protocol transitions have no associated actions

(in contrast to state machine transitions)

33

[precondition] event / [postcondition]
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Example
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CLOSED

Simple TCP {protocol}

open ACK

close close

ESTABLISHEDSYN_SENT
send SYN

send FINsend FIN

Send signal actions are not modeled here.
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Protocol state machines

‣ Protocol state machines cannot describe responses such 
as sending acknowledgement messages

‣ Protocol state machines allow a reflective description of 
behaviour

‣ For a constructive description, state machines should be 
used

35
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Semantic variation points

‣ Some UML elements have semantic variation points

‣ e.g. unexpected event reception (see UML Spec. 15.3.7)

• What to do if there is a new message in the queue that 
cannot be handled?

- ignore the event (delete the message)?

- defer the event (leave the message in queue)?

- raise an exception?

‣ e.g. concurrency: can two processes really be concurrent?

• code generators enforce determinism

36
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Semantic variation points

‣ Concurrency: Which transition is triggered first?

37

S3

e2
S1

e1

e2

S2

S4

After event e1, states S1 and S4 are active.
Assume, e2 is the next event.
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Modeling example (1)

‣ Modeling a telephone:

1. play a dial tone after the caller lifts the receiver

2. then allow the user to dial digits

• quit after a timeout

• quit after invalid digit

3. establish connection

• play busy tone if busy

• play ringing tone otherwise

4. enable talking until the caller hangs up

38
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Figure 15.41 - State machine diagram representing a state machine

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Time-out

do/ play message

dial digit(n)[invalid]

/connectInvalid

do/ play message

[incomplete]after (15 sec.)

after (15 sec.)

activeEntry

aborted

abort terminate
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Modeling example (2)
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Notation

The notation for an Interaction in a Sequence Diagram is a solid-outline rectangle. The keyword sd followed by the 

Interaction name and parameters is in a pentagon in the upper left corner of the rectangle. The notation within this 

rectangular frame comes in several forms: Sequence Diagrams, Communication Diagrams, Interaction Overview 

Diagrams, and Timing Diagrams.

The notation within the pentagon descriptor follows the general notation for the name of Behaviors. In addition the 

Interaction Overview Diagrams may include a list of Lifelines through a lifeline-clause as shown in Figure 14.28. The list 

of lifelines is simply a listing of the Lifelines involved in the Interaction. An Interaction Overview Diagram does not in 

itself show the involved lifelines even though the lifelines may occur explicitly within inline Interactions in the graph 

nodes.

An Interaction diagram may also include definitions of local attributes with the same syntax as attributes in general are 

shown within class symbol compartments. These attribute definitions may appear near the top of the diagram frame or 

within note symbols at other places in the diagram.

Please refer to Section 14.4 to see examples of notation for Interactions.

Examples

Figure 14.16 - An example of an Interaction in the form of a Sequence Diagram

The example in Figure 14.16 shows three messages communicated between two (anonymous) lifelines of types User and 

ACSystem. The message CardOut overtakes the message OK in the way that the receiving event occurrences are in the 

opposite order of the sending OccurrenceSpecifications. Such communication may occur when the messages are 

asynchronous. Finally a fourth message is sent from the ACSystem to the environment through a gate with implicit name 

out_Unlock. The local attribute PIN of UserAccepted is declared near the diagram top. It could have been declared in a 

Note somewhere else in the diagram.

sd UserAccepted

:User :ACSystem

Code(PIN)

CardOut

OK
Unlock

+PIN:Integer {readonly 0<=PIN <=9999}

Name of Interaction

Lifeline

Message

Local Attribute

Network Protocol Design and Evaluation
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UML Sequence Diagrams

‣ Model process interaction (variant of interaction diagrams)

‣ Focus on message exchange

‣ Example:

40
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Figure 14.23 - Metamodel elements of a sequence diagrams

sd N

s[u]:B s[k]:B

m3

m3

Interaction

Lifeline

(formal) Gate

Message

(receiving)OccurrenceSpecification

OccurrenceSpecification

N:Interaction

in_m3:Gate s[u]:Lifeline

s[k]:Lifeline

rec_m3_on_su:

OccurrenceSpecification

send_m3_on_su:
OccurrenceSpecification

rec_m3_on_sk:
OccurrenceSpecification

m3_1:Message

m3_2:Message

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

UML Sequence Diagrams
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Elements of Sequence Diagrams

42

asynchronous message

reply

call (synchronous message)

:Host1

lifeline

execution 
specification

Messages:

:Host1

c==1 state 
invariant
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Figure 14.26 - Sequence Diagram with time and timing concepts

The Sequence Diagram in Figure 14.26 shows how time and timing notation may be applied to describe time observation 

and timing constraints. The :User sends a message Code and its duration is measured. The :ACSystem will send two 

messages back to the :User. CardOut is constrained to last between 0 and 13 time units. Furthermore the interval between 

the sending of Code and the reception of OK is constrained to last between d and 3*d where d is the measured duration 

of the Code signal. We also notice the observation of the time point t at the sending of OK and how this is used to 

constrain the time point of the reception of CardOut.

Communication Diagrams

Communication Diagrams focus on the interaction between Lifelines where the architecture of the internal structure and 

how this corresponds with the message passing is central. The sequencing of Messages is given through a sequence 

numbering scheme.

Communication Diagrams correspond to simple Sequence Diagrams that use none of the structuring mechanisms such as 

InteractionUses and CombinedFragments. It is also assumed that message overtaking (i.e., the order of the receptions are 

different from the order of sending of a given set of messages) will not take place or is irrelevant.

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation
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Sequence Diagram with Constraints (1)
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Constraints

[1]  The multiplicity of firstEvent must be 2 if the multiplicity of constrainedElement is 2; otherwise, the multiplicity of 

firstEvent is 0. (The constraint is a requirement on the duration from the execution time from (constrainedElement[1], 

firstEvent[1]) to (constrainedElement[2], firstEvent[2]). If the multiplicity of constrainedElement is 1, then the constraint 

is a requirement on the duration given by the duration of the execution of that constrainedElement.)

if (constrainedElement->size() = 2) then (firstEvent->size() = 2) else (firstEvent->size() = 0)

Semantics

The semantics of a DurationConstraint is inherited from Constraints. All traces where the constraints are violated are 

negative traces i.e., if they occur in practice the system has failed.

Notation

A DurationConstraint is shown as some graphical association between a DurationInterval and the constructs that it 

constrains. The notation is specific to the diagram type.

Examples

See example in Figure 13.15 on page 440 where the TimeConstraint is associated with the duration of a Message and the 

duration between two OccurrenceSpecifications.

Figure 13.15 - DurationConstraint and other time-related concepts

Changes from previous UML

This metaclass has been added.

13.3.11 DurationInterval (from SimpleTime)

Generalizations

• “Interval (from SimpleTime)” on page 444

sd UserAccepted

:User :ACSystem

Code

CardOut {0..13}

OK
Unlock

{d..3*d}

@t

{t..t+3}

&d

DurationObservation (of Code)

DurationConstraint (of CardOut)

DurationConstraint

TimeConstraint

TimeObservation
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Sequence Diagram with Constraints (2)
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TCP Example

45

SYN seq=x

SYN ACK seq=y

ACK seq=x+1
DATA

FIN seq=x’

ACK

FIN seq=y

ACK

:Host1 :Host2sd TCP
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Examples

The Interaction described by a Communication Diagram in Figure 14.27 shows messages m1 and m3 being sent 

concurrently from :r towards two instances of the part s. The sequence numbers show how the other messages are 

sequenced. 1b.1 follows after 1b and 1b.1.1 thereafter etc. 2 follows after 1a and 1b.

Sequence expression 

The sequence-expression is a dot-separated list of sequence-terms followed by a colon (‘:’). 

sequence-term  ‘.’  . . .  ‘:’

Each term represents a level of procedural nesting within the overall interaction. If all the control is concurrent, then 

nesting does not occur. Each sequence-term has the following syntax:

[ integer | name ] [ recurrence ]

The integer represents the sequential order of the Message within the next higher level of procedural calling. Messages 

that differ in one integer term are sequentially related at that level of nesting. Example: Message 3.1.4 follows Message 

3.1.3 within activation 3.1. The name represents a concurrent thread of control. Messages that differ in the final name are 

concurrent at that level of nesting. Example: Message 3.1a and Message 3.1b are concurrent within activation 3.1. All 

threads of control are equal within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or more Messages that are executed 

depending on the conditions involved. The choices are:

‘*’ ‘[’ iteration-clause ‘]’an iteration

‘[’ guard ‘]’a branch

Figure 14.27 - Communication diagram 

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,

1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages
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Communication Diagram

‣ Shows interactions from an architectural point of view

46
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UML Review

‣ Collection of diagrams and notations

‣ Semantics is not always clear (this is also a consequence 
of historical and political decisions)

‣ Useful for specification and documentation

‣ (Partly) supported by modeling tools

‣ Model-checking based on UML is still a research topic

47

more on semantics: lecture Software Design, Modelling and Analysis in UML 
by Bernd Westphal, Software Engineering workgroup, Uni Freiburg
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UML Review

‣ UML state machines describe the behaviour in general 
(constructive description), used for

• specification

• documentation

‣ UML sequence diagrams describe the specific behaviour 
during execution (reflective description), used for

• describing test sequences

• visualization of simulations

• documentation

48
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FSM Implementation

‣ Generic techniques (for C++, Java, ...):

• The nested switch/case technique

- define a switch for the states, in each state define 

a switch for events

- change of behaviour by conditional statements

• The State Design Pattern

- define an abstract superclass with an event 

handler and derive a concrete class for each state

- associate the state with the class holding the 
context (the state machine)

- change of behaviour by object change

49
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Nested switch/case

50

enum State {q0, q1, q2, ...}; 
enum Event {e1, e2, ...}; 

static State s = q0;

void handle(Event e) 
{  
  switch(s) 
  { 
  case q0: 
    switch(e) 
    { 
    case e1: 
      s = q1; 
    break; 
    case e2: 
      s = q2; 
    break;
    [...] 
    }
  break; 
  
  case q1: 
    switch(e) 
    { 

    case e1: 
      s = q2; 
    break; 
    case e2:
      s = q0; 
    break;
   [...] 
    } 
  break;

  case q2: 
    switch(e) 
    { 
    case e1: 
      s = q0; 
    break; 
    case e2:
      s = q1; 
    break;
   [...] 
    } 
  break;
  [...] 
  } 
} 

e1

q2q0

q1

e2

e1

e2

e2
e1
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State pattern

‣ Separate classes for different states

‣ State change by instantiating a new object

51

Context
request()

State
handle()

ConreteState3
handle()ConreteState2

handle()ConreteState1
handle()

state.handle()
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State pattern

52

Context
request()

State
handle()

ConreteState3
handle()ConreteState2

handle()ConreteState1
handle()

state.handle()

class Context {
  private State state;
  public void setState(State s) {
    state = s;
  }
  handleEvent(Event e) {
    state.handle(e, this);
  }
}

interface State {
  public void handle(Event e, Context c)
}

class ConcreteState1 implements State {
  public void handle(Event e, Context c) {
    switch (e)
    case e1: context.setState(new State1); break;
    case e2: context.setState(new State2); break;
  }
}

class ConcreteState2 implements State {
  [...]
}

[...]
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FSM Implementation

‣ Nested switch/case

• suitable for small number of states and events with 
only few actions

• hopefully you don’t need to program and maintain 

this by hand...

‣ State design pattern

• generally better maintainable

• oversized for small state machines

• state classes can be tested separately

53
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Automatic code generation

• Code generation from state charts

• Used in Model-driven Software Engineering

54

The Model-driven Software Architecture paradigm

cf. [Pastor et al.: “Model-driven Development”, Informatik Spektrum 31(5), 2008]

Computation-
independent 
model

Platform-
independent 
model

Platform-
specific model Code modelMDSE

paradigm

Traditional
OO methods

Functional 
Requirements

Conceptual 
Model Compilation 

Model Source Code

Sequence 
diagram

Object model

Dynamic 
model

Functional 
model

Use Cases
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Automatic code generation

‣ Code generation from state charts can be performed by 
tools for Model-Driven Software Engineering (MDSE), e.g. 

IBM/Telelogic Rhapsody

• Graphical UML state machine modeling

• C++/Java code generation

• Simulation and animation 

(special instructions inserted into the code)

• Simulation run can be shown in a sequence diagram

55
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State machines in MDSE

56

[IBM/Telelogic Rhapsody 7.4 Tutorial, 2008]

Modeling state charts with Rhapsody® 
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State machines in MDSE
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[IBM/Telelogic Rhapsody 7.4 Tutorial, 2008]

State chart animation with Rhapsody® 
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State machines in MDSE
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[IBM/Telelogic Rhapsody 7.4 Tutorial, 2008]

Sequence diagram from state chart animation with Rhapsody® 


