@ E]
\% = iz
\%

%62 ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

Network Protocol Design
and Evaluation

04 - Protocol Specification, Part |

Stefan Ruhrup

University of Freiburg
Computer Networks and Telematics
IIF

Summer 2009 CoNe INSTITUT FOR
Freiburg FREsBURG

Overview

» In the last chapter:

e The development process (overview)

» In this chapter:
e Specification
e State machines and modeling languages

e UML state charts and sequence diagrams
e SDL and MSC (Part 1)

Network Protocol Design and Evaluation) Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

What are we modeling?

Transitional Systems Reactive Systems
input-output transformation event-driven
e.g. scientific computation, compilers e.g. communication protocols,

operating systems, control systems

correctness criteria: correctness criteria:
- termination - hon-termination under normal
- correctness of input-output conditions
transformation - correctness of event-response actions

formal models describe event-response
sequences, including state information

[S. Leue, Design of Reactive Systems, Lecture Notes, 2002]

Network Protocol Design and Evaluation 3 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Specification with State Machines

» A protocol interacts with the environment
* triggered by events
® responds by performing actions

e behaviour depends on the history of past events,
i.e. the state

event 1 R
. :| state 1 state 2
I action | Svent 2 action

» state machines do not model the data flow,
but the flow of control

¥

Network Protocol Design and Evaluation

4 Computer Networks and Telematics
Stefan Rihrup, Summer 2009

University of Freiburg

Specification with State Machines

» Why state machines?
...and not programming languages?

e |ack of formal semantics
¢ risk of overspecification

e requirements specification should be kept
implementation-independent

Network Protocol Design and Evaluation 5
Stefan Rihrup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Finite State Machines

» Acceptors (sequence detectors)
e produce a binary output (yes/no) on an input sequence

e accept regular languages

» Transducers

e Mealy machines (output determined on current state
and input)

e Moore machines (output determined on current state)

e both models are equivalent

Network Protocol Design and Evaluation 6 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Mealy Machines, Example

1/1 0/1

state

\ transition

input / output

state diagram

Network Protocol Design and Evaluation 7
Stefan Rihrup, Summer 2009

State | In | Out | Next

state
do 0 0 (oF
do 1 1 do
o]l 0 0 g2
ofl 1 0 of
Q2 0 1 g2
g 1 1 do

state transition table

Computer Networks and Telematics
University of Freiburg

Definition of a Mealy machine

» A Mealy state machine is a tuple (Q,qo,l,0,T,G), where

Q is a finite, non-empty set of states,

qo € Q is the initial state,

| is a finite set called the input alphabet,

O is a finite set called the output alphabet,
T is a transition function, T: S x| — S, and

G is an output function, G: S x | = O.

Network Protocol Design and Evaluation 8

Stefan Rihrup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Limitations of FSMs

» No data variables
variable values and changes have to be coded into the

state space
— exponential state space explosion

lift dial 0 dial 0
recelver

Example: dialing a
telephone number

Computer Networks and Telematics

Network Protocol Design and Evaluation 9
University of Freiburg

Stefan Rihrup, Summer 2009

Limitations of FSMs

» Problem with finite memory:
¢ finite variable range

e problem when modeling communication channels:

- size of the channel unknown

- determining buffer size = overspecification

Network Protocol Design and Evaluation 10 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Limitations of FSMs

» Problem with concurrent FSMs
® NO communication channels
® no synchronization

e composition of interacting FSMs leads to new states
and an explosion of the state space

» Communication protocols can be seen as concurrent state
machines

Network Protocol Design and Evaluation 11 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Limitations of FSMs

» Missing abstraction, missing composition

dial digit
[incomplete]

dialed number has to
Dialing be coded into states!

dial digit
Dial Tone })

lift receiver /
play dial tone

dial digit [valid] /
connect

< /L Connecting]
Busy busy
connected

/ !
here, a group transition : o
could be used Talking Ringing

answers
Network Protocol Design and Evaluation 12 Computer Networks and Telematics

Stefan Rihrup, Summer 2009 University of Freiburg

State machines for specification

» Original FSMs are not suitable for modeling and specifying
processes in distributed systems

» Extended state machine models:
e Communicating Finite State Machines
e Harel statecharts (superstates, concurrent states)

e Extended Finite State Machines (variables, operations,
conditions)

e Basis for many practical modeling and specification
languages such as SDL, UML.

Network Protocol Design and Evaluation 13 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Description Languages:
Structure vs. Behaviour

» Structural languages:
e describe the static, structural concept (architecture)

® e.g. class diagrams, component diagrams

» Behavioural languages:
e describe behaviour, i.e. activities, interaction

e e.g. state machines and sequence diagrams

Network Protocol Design and Evaluation 14 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Description Languages:
Constructive vs. reflective

» Constructive languages:

e describe information for executing the model or for
(executable) code generation

® e.g. state machines

» Reflective or assertive languages:

e describe views of the model, statically or during
execution

® e.g. sequence diagrams

[D. Harel: “Some thoughts on statecharts, 13 years later”, 1996]

Network Protocol Design and Evaluation 15 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

starting point

» CLOSED)=

I
|
Example:
send: <nothing> !
- ! 2
TCP state transition ' X
timeout @, e,
- send: |RST « LISTEN CONCY
diagram o PX
it passive open N
“O\k g Ve 4
05'.// 7.
e E\S S, "s,)
A NG
' « 5 ‘9}7[, %
[Wright, Stevens: “TCP/IP lllustrated, &or
Volume 2: The Implementation”, 1995] CSYNRCVD recv: SYN SN ST PPl close
- send: SYN, ACK — or timeout
N simultaneous open < acttve open
N @)
&(\})\ \(00 Nad
R S
G S
NG A4S
A S %Q/
AN FT oo A
appl:|close S TABLSHED D~ - SV FIN | o warT)
send: | FIN - send: ACK “
data transfer state : | :
54 I ! I
x.c}OQ L | appl::close :
@QQ X | send:IFIN
& |
s \ | |
r-—-- -]~ T PR P 1 | |
| FIN simultaneous close | | | eev: ACK
: FIN_WAIT_1 sond: ACK CLOSING : : LAST_ACK :sen 3. <n0thin§>.
! % | Lo oo J
[@%—}o [passive close
. . ! :JACK SN, recv:| ACK !
—— normal transitions for client [recv. . AN : . [
— == normal transitions Ié‘or server send:f<nothing> "7(\(7% send: | <nothing>,
appl: state transitions taken when application issues operation ! e ‘
recv: state transitions taken when segment received ! !
send: what is sent for this transition : recv: FIN u\ :
FIN_WAIT_2 TIME_WAIT >
: send: ACK :

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

active close

16

2MSL timeout

Computer Networks
Unive

and Telematics
rsity of Freiburg

Example:

TCP connection
state diagram

[RFC 793]

Network Protocol Design and Evaluation

Stefan Rihrup, Summer 2009

17

Fom - + o \ active OPEN
| CLOSED | =\ e
Fomm - F<o - \ \ create TCB
A \ \ snd SYN
passive OPEN CLOSE \ \
—————————————————————— AN
create TCB delete TCB \ \
\% \
Fommm + CLOSE \
| LISTEN | = ——mmmmo———
o + delete TCB
rcv SYN | SEND
__________________ v
————————— + snd SYN,ACK / \ snd SYN L
e - >
SYN rcv SYN SYN
RCVD | <mm e e e e e e SENT
snd ACK
--------- + rcv ACK of SYN \ / rcv SYN,ACK S
X { { snd ACK
\Y \Y
CLOSE o - +
——————— | ESTAB |
snd FIN e +
CLOSE | rcv FIN
25
————————— + snd FIN / \ snd ACK S
FIN |< ——————————————————————————————————— >| CLOSE |
WAIT-1 |————mmmmmmmmo——— WAIT
————————— + rcv FIN \ Fom e ——— 4
{ rcv ACK of FIN ——————- { CLOSE {
—————————————— snd ACK —_—————
\Y x \Y snd FIN V
Fmm e + Fmm e + Fmm e +
| FINWAIT-2 | | CLOSING | | LAST-ACK|
Fmm e —_ + Fmm e + Fmm e —_ +
rcv ACK of FIN rcv ACK of FIN
rcv FIN = e Timeout=2MSL —--———————————
——————— X \% ———————————— X \%
\ snd ACK Fom e +delete TCB Fomm +
———————————————————————— >|TIME WAIT|----—-———————————->| CLOSED |
Fe—m————— + Fe—m————— +

Computer Networks and Telematics
University of Freiburg

Example: TCP Sequence Diagram

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

Host 1

Host 2

18

connection
establishment

connection
termination

Computer Networks and Telematics
University of Freiburg

UML

» Unified Modeling Language UNIFIED o

) MODELING
e general-purpose language for modeling | ycuse Lm
and specification in software engineering

¢ in this context of particular interest:
State machines, sequence diagrams

» The standard: UML 2.0 Superstructure Specification
http://www.omg.org/spec/UML/2.0/

» see also: Lecture on Software Design, Modelling and
Analysis in UML by Bernd Westphal, Uni Freiburg

Network Protocol Design and Evaluation 19 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/

UML State Machine, Example

transition
|
ATM state
name d ® l VerifyCard —
. {final})
initial "~ _ composite
pseudostate acceptCard / state
4
ReadAmount
®

N

[selectAmount J

OutOfService
{final}

amount

outOfService

releaseCard
VerifyTransaction ReleaseCard
{final} {final}

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 20 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

States and Transitions

_ initial pseudostate
StateName simple state

history pseudostate
(shallow history)

entry activity state with (deep history)
exit activity compartment
do activity

fork and join pseudostate

@
(StateNamew @ history pseudostate
X

@ final state

terminate pseudostate

event [guard] / action
transition >

Network Protocol Design and Evaluation 21 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Junction pseudostates

State0

e2[b < 0]

State1

State? State3 State4

junctions realize merges or static conditional branches

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 29 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Choice pseudostates

<>

[>=10] [<10] [id >=10] [id <10]

choices realize dynamic conditional branches

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 23 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Fork and Join

Process

---------------------- (e

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

24

[UML Superstructure Specification v2.2]

Computer Networks and Telematics
University of Freiburg

Actions

counter++ action

ack < receive signal action ack < signal receipt

triggers a transition
msg > send signal action

Network Protocol Design and Evaluation 25 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Example

Lynch’s protocol

c :=get
o> next char »ﬁg

NACK(§—

ERR <
- v
c :=get
ACK é next char ACK(c)
action
NACK < ACK(c) ,
receive signal send signal

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

26

Computer Networks and Telematics
University of Freiburg

Composite states

Example:
entry point
entry1 /
composit <>
e state - N
—_ Scomp // substate
(Sin }
trA/ trB/
exitA e:h exit point
[UML Superstructure Specification v2.2]
Network Protocol Design and Evaluation 27 Computer Networks and Telematics

Stefan Rihrup, Summer 2009 University of Freiburg

Composite states, Example

/ Dialing \

Stat) 9Git) (PpatiaiDial) [number.isValid()]

entry/ start dial tone I entry/number.append(n) >©
exit/ stop dial tone J

_/

digit(n)

o /

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 28 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Substate entry

explicit

\
entry X
default entry ’_{:, >:]_>@
entry point S
entry

most recently active
substate is restored

shallow history ‘_)CJZ
entry @

deep history O

most recently active
substate is restored,

Al

X also recursively in all
entry sublevels
Network Protocol Design and Evaluation 29 Computer Networks and Telematics

Stefan Rihrup, Summer 2009 University of Freiburg

Submachine states

containing state machine

ATM

H{ verifyCard J
submachine
\LaccceptCarjl/

(readAmount : 2eorted
L ReadAmountSM

outOfService/
A\ \ 2

1 releaseCard/
[0UtOfSerICGJ [verifyTransaction)[CardReleased }

)

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 30 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

UML Protocol State Machine

Example:

Door {protocol})

open/

v

create/ W
H{ opened]){ closed }é
[doorway->isEmpty()] close/

lock/

e

[UML Superstructure Specification v2.2]

unlock/

Network Protocol Design and Evaluation 31 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

UML Protocol State Machine

keyword {protocol} differentiates

this type of diagram transition
l ‘ ev/ent ... but no actions!
name ——»| Door {protocol}) l f
open/

create/ \1/ W
H{ opened]){ closed }é
|7 [doorway->isEmpty()] close/

initial yd / / . unlock/
oc

pseudostate
precondition

state
lock
[UML Superstructure Specification v2.2]
Network Protocol Design and Evaluation 39 Computer Networks and Telematics

Stefan Rihrup, Summer 2009 University of Freiburg

Protocol Transitions

» Notation of transitions:

[precondition] event / [postcondition]

>

» Protocol transitions have no associated actions
(in contrast to state machine transitions)

Network Protocol Design and Evaluation 33 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Example

Simple TCP {protocol}
(crosen J=r(e)
CLOSED send SYN SYN_SENT ESTABLISHED
close close
send FIN send FIN
<

Send signal actions are not modeled here.

Network Protocol Design and Evaluation 34 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Protocol state machines

» Protocol state machines cannot describe responses such
as sending acknowledgement messages

» Protocol state machines allow a reflective description of
behaviour

» For a constructive description, state machines should be
used

Network Protocol Design and Evaluation 35 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Semantic variation points

» Some UML elements have semantic variation points
» e.g. unexpected event reception (see UML Spec. 15.3.7)

e What to do if there is a new message in the queue that
cannot be handled?

- ignore the event (delete the message)?
- defer the event (leave the message in queue)?
- raise an exception?
» e.g. concurrency: can two processes really be concurrent?

e code generators enforce determinism

Network Protocol Design and Evaluation 36 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Semantic variation points

» Concurrency: Which transition is triggered first?

L S

-
-

After event e1, states S1 and S4 are active.
Assume, e2 is the next event.

Network Protocol Design and Evaluation 37 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Modeling example (1)

» Modeling a telephone:
1. play a dial tone after the caller lifts the receiver
2. then allow the user to dial digits
® quit after a timeout
® quit after invalid digit
3. establish connection
® play busy tone if busy
® play ringing tone otherwise

4. enable talking until the caller hangs up

Network Protocol Design and Evaluation 38 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

activeEntry

O———>

Modeling example (2)

Active

after (15 sec.)

(DialTone

lift
receiver
/get dial tone

()

) dial digit(n)

(Time-out 1

do/ play messagej

dial digit(n)
[incomplete]

after (15 sec.)

Dialing

| do/ play dial tone

.

dial digit(

dial digit(n)[valid]

w

caller
hangs up
/disconnect

(Invalid /connect
Ldo/ play messageJ I Connecting
Pinned busy connected
| Busy = |
callee do/ play busy
callee hangs up tone
answers
(R- 0
) inging
Talking —
callee answers do/ play rmgng
K /enable speech tone /
abort terminate

[UML Superstructure Specification v2.2]

@ aborted

Network Protocol Design and Evaluation

Stefan Rihrup, Summer 2009

39

Computer Networks and Telematics
University of Freiburg

UML Sequence Diagrams

» Model process interaction (variant of interaction diagrams)
» Focus on message exchange

» Example:

Name of Interaction
sd UserAccepted
+PIN:Integer {readonly 0<=PIN <=9999} <<1— Local Attribute
< Lifeline
:User :ACSystem
T
Code(PIN)
Message

-

Unlock
|
|
|
|

I
I
I
]
I
I
I
I
I
|
I
I
I
I
|
I
I
|

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 40 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

UML Sequence Diagrams

Example:

Interaction —
sd N

‘D
Lifeline
(—~ s[u]:B | _Message

s[k]:B
I I
m3 | .. g
i - : . A/Eece/vmg)OccurrenceSpeCIf/cat/on
m
\
(formal) Gate // | 7
/ ‘ ‘
I I

OccurrenceSpecification

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 41 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Elements of Sequence Diagrams

‘Host1 ‘Host1

I I

lifeline | '
| (o==) - .state'
| invariant
' |

|
exe'c.utlo'n
specification
I Messages:
|
' > asynchronous message
- - - - - - - - reply
» call (synchronous message)
Network Protocol Design and Evaluation 49 Computer Networks and Telematics

Stefan Rihrup, Summer 2009 University of Freiburg

Sequence Diagram with Constraints (1)

sd UserAccepted)

:User :ACSystem

DurationObservation—____

Code d=duration

\

TimeObservation — |

DurationConstraint

Vo]

TimeConstraint

Unlock

[UML Superstructure Specification v2.2]

Network Protocol Design and Evaluation 43 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Sequence Diagram with Constraints (2)

sd UserAccepted)

DurationObservation (of Code)

/

/

{t..t4+3}

Unlock

\
:User :ACSystem
DurationConstraint (of CardOut)
} Code &d }
H [| |
DurationConstraint \‘ {d__s*d}\ i TimeObservation
‘ CardOut {V /
TimeConstraint @t
OK }
|
|
|

\
\
\
<
I
\
I
\
\
\
[

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

[UML Superstructure Specification v2.2]

44 Computer Networks and Telematics

University of Freiburg

TCP Example

sd TCP)

‘Host1 ‘Host2

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

45

Computer Networks and Telematics
University of Freiburg

Communication Diagram

» Shows interactions from an architectural point of view

sd M

1a:m1i

Messages

s[k]:B

1b.1 :mSN

Lifeline
/ Message
% " with
Sequence
number
2:m2
1b.1.1:m3,
N1b.1 1.1:m2
s[u]:B
[UML Superstructure
Specification v2.2]

Network Protocol Design and Evaluation

Stefan Rihrup, Summer 2009

Computer Networks and Telematics
University of Freiburg

UML Review

» Collection of diagrams and notations

» Semantics is not always clear (this is also a consequence
of historical and political decisions)

» Useful for specification and documentation
» (Partly) supported by modeling tools

» Model-checking based on UML is still a research topic

more on semantics: lecture Software Design, Modelling and Analysis in UML
by Bernd Westphal, Software Engineering workgroup, Uni Freiburg

Network Protocol Design and Evaluation 47 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

UML Review

» UML state machines describe the behaviour in general
(constructive description), used for

e specification

e documentation

» UML sequence diagrams describe the specific behaviour
during execution (reflective description), used for

e describing test sequences
¢ visualization of simulations

e documentation

Network Protocol Design and Evaluation 48 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

FSM Implementation

» Generic techniques (for C++, Java, ...):
e The nested switch/case technique

- define a switch for the states, in each state define
a switch for events

- change of behaviour by conditional statements
e The State Design Pattern

- define an abstract superclass with an event
handler and derive a concrete class for each state

- associate the state with the class holding the
context (the state machine)

- change of behaviour by object change

Network Protocol Design and Evaluation 49 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

Nested switch/case

enum State {q0, ql, g2, ...};
enum Event {el, e2, ...};

static State s = (O0;

void handle(Event e)
{
switch(s)
{
case 0:
switch(e)
{
case el:
s = ql;
break;
case e2:
s = Q2;
break;

[...]
¥

break;

case ql:
switch(e)
{

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

case el:
s = g2;
break;
case e2:
s = q0;
break;
[...]
ks
break;
case q2:
switch(e)
{
case el:
s = q0;
break;
case e2:
s = ql;
break;
[...]
ks
break;
o]
50

Computer Networks and Telematics
University of Freiburg

State pattern

» Separate classes for different states

» State change by instantiating a new object

Context | . State
requesty() N handle()

1
1
1
1

. I
state.handle() I

’—LCDDLAMS&MB
ConrotaState

ConreteState1
handle()

Network Protocol Design and Evaluation 51 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

State pattern

class Context {
private State state; Context |~ State
public void setState(State s) { request() handle()
state = s; 7 43
} .

handleEvent(Event e) { |
state.handle(e, this); state.handle()

} Oaoan +aQ bt
} ConreteState1
interface State { handle()
public void handle(Event e, Context c)
}
class ConcreteStatel implements State {
public void handle(Event e, Context c) {
switch (e)
case el: context.setState(new Statel); break;
case e2: context.setState(new State?); break;
}
}
class ConcreteState2 implements State {
[...]
}
[...]
Network Protocol Design and Evaluation 52 Computer Networks and Telematics

Stefan Rihrup, Summer 2009 University of Freiburg

FSM Implementation

» Nested switch/case

e suitable for small number of states and events with
only few actions

¢ hopefully you don’t need to program and maintain
this by hand...

» State design pattern
e generally better maintainable
e oversized for small state machines

e state classes can be tested separately

Network Protocol Design and Evaluation 53 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

MDSE
paradigm

Traditional
OO methods

Automatic code generation

Code generation from state charts

Used in Model-driven Software Engineering

Computation- Platform-
independent independent
model model
Functional E Conceptual
Requirements ' | Model
Use Cases + || Object model
"""""" - Functional
Sequence model
diagram
Dynamic
model

Platform-
specific model

Code model

Compilation
Model

Source Code |

The Model-driven Software Architecture paradigm

cf. [Pastor et al.: “Model-driven Development”, Informatik Spektrum 31(5), 2008]

Network Protocol Design and Evaluation

Stefan Rihrup, Summer 2009

54

Computer Networks and Telematics

University of Freiburg

Automatic code generation

» Code generation from state charts can be performed by
tools for Model-Driven Software Engineering (MDSE), e.g.
IBM/Telelogic Rhapsody

e Graphical UML state machine modeling
e (C++/Java code generation

e Simulation and animation
(special instructions inserted into the code)

e Simulation run can be shown in a sequence diagram

Network Protocol Design and Evaluation 55 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

State machines in MDSE

Modeling state charts with Rhapsody®
-loix

Qﬁ'

Idle

¥
F 3

PlaceCallReq
¥

Disconnect to cc_mm PlaceCallReq to cc_mm
4 ¢ trm(30000)
Active
Disconnect 7
*— ‘ ConnectionConfirm

ConnectConfirm

k 4
Connected
| |

4 | of

[IBM/Telelogic Rhapsody 7.4 Tutorial, 2008]

Network Protocol Design and Evaluation 56 Computer Networks and Telematics
Stefan Rihrup, Summer 2009 University of Freiburg

State machines in MDSE

State chart animation with Rhapsody®

Idle

F 3

Disconnect to cc_mm

4

3

Disconnect

l PlaceCallReq

PlaceCallReq to cc_mm>

b

Active

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

.\ ConnectionZonfirm

ConnectConfirm

h 4
Connected
| |

|»

tm(30000)

[IBM/Telelogic Rhapsody 7.4 Tutorial, 2008]

57

Computer Networks and Telematics
University of Freiburg

Sequence diagram from state chart animation with Rhapsody®

State machines in MDSE

ENY | ConnectionManage. ICﬁnnectionManage...'Connec:tionManage... |MobilityManagemen..| DataLink.Regivstr..
ENY ConnectionMa Connectionha ZonnectionMa MobilityManag DataLink.Regist
nagement.Call nagement.Call nagement.Con ement. MMCall rationMonitor
Control List nection Control
7 ACTEe) i iy S — » I |
ZCrate) |) | | |
77 Create()
ZEEEBO_ — —w | | | |
A R R
7 PlaceCalReq) | 1 T ™ |

RegistrationReg()

l ChannelOpen()

T

Network Protocol Design and Evaluation
Stefan Rihrup, Summer 2009

L

i

CallConfirm{)

|

|

|

] locationUpdate()
|]

|

onfirm()

tm(15000) at ROOT. IntF zll. ROOT. InCall. CheckSignal

m(1SDDD) at ROOT. In\ll,cll ROOQT.InCall.CheckSignal

[IBM/TeIeIoglc Rhapsody 7.4 Tutorial, 2008]

Computer Networks and Telematics
University of Freiburg

58

