
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

05 - Validation, Part II

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

‣ In the first part of this chapter:

• Promela, a language to describe validation models

‣ In this part:

• Model checking with SPIN

• Example: Validation of the Alternating Bit Protocol

2

ABPslides referring to this example are marked with

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SPIN

3

‣ SPIN Model Checker

• Simple Promela Interpreter

• developed by Gerard J. Holzmann, Bell Labs

• simulation and validation of Promela models

• open source

‣ XSpin: Tcl/Tk GUI for SPIN

‣ Download: http://spinroot.com/spin/Src/

http://www.spinroot.com
http://www.spinroot.com

SPIN

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SPIN’s Structure

4

cf. [Holzmann 2003]

LTL Parser

SimulationPromela
Parser

Syntax Error
Output

Verifier
Generator pan.c

cc

.pml

Validation
model Verifier

Executable

counter-example

.pml.trail

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SPIN’s Syntax

‣ Syntax: spin [options] file

‣ Examples:
> spin -r model.pml

‣ Options:

 -r print receive events

 -c produce an MSC approximation in ASCII

 -a generate analyzer

‣ more command line options: spin --

‣ see also http://spinroot.com/spin/Man/Spin.html

5

http://spinroot.com/spin/Man/Spin.html
http://spinroot.com/spin/Man/Spin.html

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

XSPIN

6

GUI for SPIN verification and simulation runs

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Model checking with SPIN

7

[S. Leue, Design of Reactive Systems, Lecture Notes, 2001]

Requirements
elicitation

Customer or user
requirements

Requirements
analysis and
negotiation

Requirements
documentation

and specification

Requirements
validation

Negotiated and
validated

requirements

M ⊨ L ?

1. build a
validation
model M

2. specify a property
using Temporal Logic

3. run the model
checker SPIN

L

M

‣ Sender and receiver communicate over an unreliable
channel (without message loss)

‣ Protocol: The alternating bit protocol (cf. Exercise 2)

‣ 3 Processes: Sender, Receiver, Lower Layer:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Creating a validation model

8

[G. J. Holzmann: “Design and validation of protocols: a
tutorial”, Computer Networks and ISDN Systems, 25(9), 1993]

Sender Receiver

Lower Layer

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Modeling processes

Lower Layer model:

‣ Data messages are
passed from the sender

to the receiver.

‣ Acknowledgments are

passed from the
receiver to the sender

‣ Data and Acks contain
an alternating bit

9

mtype = { data, ack }

proctype lower_layer(chan fromS, toS,
 fromR, toR)

{

 byte d; bit b;

 do

 ::fromS?data(d,b) -> toR!data(d,b)
 ::fromR?ack(b) -> toS!ack(b)

 od

}

fromS toS fromR toR

Lower Layer

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Modeling channels

‣ Channel initialization reflect the message types used here

10

#define N 2

chan fromS = [N] of { byte, byte, bit }; /* data channels */

chan toR = [N] of { byte, byte, bit };

chan fromR = [N] of { byte, bit }; /* ack channels */

chan toS = [N] of { byte, bit };

fromS toS fromR toR

Lower Layer

data ack

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Modeling processes (cntd.)

Introducing unreliability in the lower layer:

11

proctype lower_layer(chan fromS, toS, fromR, toR)

{ byte d; bit b;

 do

 ::fromS?data(d,b) ->

 if

 ::toR!data(d,b) /* correct */

 ::toR!error /* corrupted */

 fi

 ::fromR?ack(b) ->

 if

 ::toS!ack(b) /* correct */

 ::toS!error /* corrupted */

 fi

 od

}

random choice

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Modeling the Sender

12

proctype Sender(chan in, out)

{ byte mt; /* message data */

 bit at; /* alternation bit transmitted */

 bit ar; /* alternation bit received */

 FETCH; /* get a new message */

 out!data(mt,at); /* ...and send it */

 do

 ::in?ack(ar) -> /* await response */

 if

 ::(ar == at) -> /* successful transmission */

 FETCH; /* get a new message */

 at=1-at /* toggle alternating bit */

 ::else -> /* there was a send error */

 skip /* don’t fetch a new msg. */

 fi;

 out!data(mt,at)

 ::in?error(ar) -> /* receive error */

 out!data(mt,at) /* simply send again */

 od

}

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Modeling the Receiver

13

proctype Receiver(chan in, out)

{ byte mr; /* message data received */

 byte last_mr; /* mr of last error-free msg */

 bit ar; /* alternation bit received */

 bit last_ar; /* ar of last error-free msg */

 do

 ::in?error(mr,ar) -> /* receive error */

 out!ack(last_ar); /* send ack with old bit */

 ::in?data(mr,ar) ->

 out!ack(ar); /* send response */

 if

 ::(ar == last_ar) -> /* bit is not alternating */

 skip /* ...don’t accept */

 ::(ar != last_ar) -> /* bit is alternating */

 ACCEPT; /* correct message */

 last_ar=ar; /* store alternating bit */

 last_mr=mr /* save last message */

 fi

 od

}

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Fetching and Accepting

‣ We assume that the fetched data is a sequence of integers
(modulo some maximum value)

‣ Correctness claim: The receiver should only accept those

data messages that contain the correct integer value:

14

#define FETCH mt = (mt+1)%MAX

#define ACCEPT assert(mr==(last_mr+1)%MAX)

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Defining the initial process

15

#define N 2

init {

 chan fromS = [N] of { byte, byte, bit };

 chan toR = [N] of { byte, byte, bit };

 chan fromR = [N] of { byte, bit };

 chan toS = [N] of { byte, bit };

 atomic {

 run Sender(toS, fromS);

 run Receiver(toR, fromR);

 run lower_layer(fromS, toS, fromR, toR)

 }

}

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Putting all together

16

#define N 2
#define MAX 8
#define FETCH mt = (mt+1)%MAX
#define ACCEPT assert(mr==(last_mr+1)%MAX)

mtype = { data, ack, error }

proctype lower_layer(chan fromS, toS, fromR, toR) {...}
proctype Sender(chan in, out) {...}
proctype Receiver(chan in, out) {...}

init {
 chan fromS = [N] of { byte, byte, bit };
 chan toR = [N] of { byte, byte, bit };
 chan fromR = [N] of { byte, bit };
 chan toS = [N] of { byte, bit };

 atomic {
 run Sender(toS, fromS);
 run Receiver(toR, fromR);
 run lower_layer(fromS, toS, fromR, toR) }
}

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Running the program

17

‣ When invoking spin filename.pml the simulator is started.

‣ Simulations are random by default

‣ Violated assertions abort the simulation

> spin alternating.pml
spin: line 64 "alternating.pml", Error: assertion violated
spin: text of failed assertion: assert((mr==((last_mr+1)%8)))
#processes: 4
 97: proc 3 (lower_layer) line 22 "alternating.pml" (state 10)
 97: proc 2 (Receiver) line 64 "alternating.pml" (state 9)
 97: proc 1 (Sender) line 33 "alternating.pml" (state 14)
 97: proc 0 (:init:) line 82 "alternating.pml" (state 5) <valid end state>
4 processes created

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Running the program again

18

> spin alternating.pml
spin: line 64 "alternating.pml", Error: assertion violated
spin: text of failed assertion: assert((mr==((last_mr+1)%8)))
#processes: 4
 97: proc 3 (lower_layer) line 22 "alternating.pml" (state 10)
 97: proc 2 (Receiver) line 64 "alternating.pml" (state 9)
 97: proc 1 (Sender) line 33 "alternating.pml" (state 14)
 97: proc 0 (:init:) line 82 "alternating.pml" (state 5) <valid end state>
4 processes created

> spin alternating.pml
spin: line 64 "alternating.pml", Error: assertion violated
spin: text of failed assertion: assert((mr==((last_mr+1)%8)))
#processes: 4
 34: proc 3 (lower_layer) line 18 "alternating.pml" (state 9)
 34: proc 2 (Receiver) line 64 "alternating.pml" (state 9)
 34: proc 1 (Sender) line 33 "alternating.pml" (state 14)
 34: proc 0 (:init:) line 82 "alternating.pml" (state 5) <valid end state>
4 processes created

This is a random simulation, let’s see if the error is singular...

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Running the program

‣ Before proceeding with the analysis...
Printing the message content makes life easier:

‣ By choosing a fixed seed for the random simulation we
obtain always the same message sequence:

19

#define ACCEPT printf("ACCEPT %d\n", mr); assert(mr==(last_mr+1)%MAX)

> spin -nSEED alternating.pml

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Showing the message sequence

20

> spin -n3 -c alternating.pml
proc 0 = :init:
proc 1 = Sender
proc 2 = Receiver
proc 3 = lower_layer
q\p 0 1 2 3
 1 . out!3,1,0
 1 . . . fromS?3,1,0
 2 . . . toR!1,0,0
 2 . . in?1,0,0
 3 . . out!2,0
 3 . . . fromR?2,0
 4 . . . toS!1,0
 4 . in?1,0
...
...
 3 . . out!2,1
 3 . . . fromR?2,1
 4 . . . toS!1,0
 4 . in?1,0
 1 . out!3,2,1
 ACCEPT 2
spin: line 64 "alternating.pml", Error: assertion violated
spin: text of failed assertion: assert((mr==((last_mr+1)%8)))

-c = columnated output

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Showing receive events

21

> spin -n3 -r alternating.pml
 6: proc 3 (lower_layer) line 12 "alternating.pml" Recv 3,1,0 <- queue 1 (fromS)
 9: proc 2 (Receiver) line 56 "alternating.pml" Recv 1,0,0 <- queue 2 (in)
 14: proc 3 (lower_layer) line 17 "alternating.pml" Recv 2,0 <- queue 3 (fromR)
 18: proc 1 (Sender) line 43 "alternating.pml" Recv 1,0 <- queue 4 (in)
 21: proc 3 (lower_layer) line 12 "alternating.pml" Recv 3,1,0 <- queue 1 (fromS)
 24: proc 2 (Receiver) line 56 "alternating.pml" Recv 1,0,0 <- queue 2 (in)
 27: proc 3 (lower_layer) line 17 "alternating.pml" Recv 2,0 <- queue 3 (fromR)
 29: proc 1 (Sender) line 34 "alternating.pml" Recv 2,0 <- queue 4 (in)
 39: proc 3 (lower_layer) line 12 "alternating.pml" Recv 3,2,1 <- queue 1 (fromS)
 41: proc 2 (Receiver) line 56 "alternating.pml" Recv 1,0,0 <- queue 2 (in)
 46: proc 3 (lower_layer) line 17 "alternating.pml" Recv 2,0 <- queue 3 (fromR)
 48: proc 1 (Sender) line 34 "alternating.pml" Recv 2,0 <- queue 4 (in)
 55: proc 3 (lower_layer) line 12 "alternating.pml" Recv 3,2,1 <- queue 1 (fromS)
 60: proc 2 (Receiver) line 58 "alternating.pml" Recv 3,2,1 <- queue 2 (in)
 62: proc 3 (lower_layer) line 17 "alternating.pml" Recv 2,1 <- queue 3 (fromR)
 66: proc 1 (Sender) line 43 "alternating.pml" Recv 1,0 <- queue 4 (in)
 ACCEPT 2
spin: line 64 "alternating.pml", Error: assertion violated
spin: text of failed assertion: assert((mr==((last_mr+1)%8)))

-r = print receive events

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

What is the error?

‣ The first accepted message contains “2”.

‣ Where is the first message?

‣ Initialization problem: last_ar == ar in the first round

22

proctype Receiver(chan in, out)

{ byte mr; /* message data received */

 byte last_mr; /* mr of last error-free msg */

 bit ar; /* alternation bit received */

 bit last_ar; /* ar of last error-free msg */

 do

 ::in?error(mr,ar) ->

 out!ack(last_ar);

 ::in?data(mr,ar) ->

 ...

}

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Running the program again

‣ Now the simulation runs without termination ...

23

proctype Receiver(chan in, out)

{ byte mr; /* message data received */

 byte last_mr; /* mr of last error-free msg */

 bit ar; /* alternation bit received */

 bit last_ar=1; /* ar of last error-free msg */

 do

 ::in?error(mr,ar) ->

 out!ack(last_ar);

 ::in?data(mr,ar) ->

 ...

}

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Verification

‣ The protocol runs in our random simulations.

‣ But does it work correctly in all situations?
To be checked by the verifier

‣ Generating and invoking a verifier with SPIN:
> ./spin -a alternating.pml

 > cc pan.c -o pan

 > ./pan

24

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Verification of the Example

25

proctype lower_layer(chan fromS, toS, fromR, toR)
{ byte d; bit b;

 do
 ::fromS?data(d,b) ->
 if
 ::toR!data(d,b) /* correct */
 ::toR!error(0,0) /* corrupted */
 fi
 ::fromR?ack(b) ->
 if
 ::toS!ack(b) /* correct */
 ::toS!error(0) /* corrupted */
 fi
 od
}

> ./pan
pan: too few parameters in send stmnt (at depth 86)
pan: wrote alternating.pml.trail

The verifier is stricter than the interpreter...

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Verification, again...

26

> ./pan
(Spin Version 5.1.7 -- 23 December 2008)
 + Partial Order Reduction

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 acceptance cycles - (not selected)
 invalid end states +

State-vector 88 byte, depth reached 127, errors: 0
 510 states, stored
 139 states, matched
 649 transitions (= stored+matched)
 2 atomic steps
hash conflicts: 0 (resolved)

 2.501 memory usage (Mbyte)

unreached in proctype lower_layer
 line 23, state 14, "-end-"
 (1 of 14 states)
unreached in proctype Sender
 line 46, state 17, "-end-"
 (1 of 17 states)
unreached in proctype Receiver
 line 69, state 17, "-end-"
 (1 of 17 states)
unreached in proctype :init:
 (0 of 5 states)

some unreached end states,
but this is ok as the protocol
should keep on transmitting

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Correctness claims

‣ Types of claims

• Safety: set of properties that the system may not violate

• Liveness: set of properties that the system must satisfy

• Reachable and unreachable states (state properties)

• Feasible and infeasible executions (path properties)

• System invariant: holds in every reachable state

• Process assertion: holds only in specific reachable
states

27

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Safety and Liveness

28

cf. [T.C. Ruys, Spin Tutorial, 2004]

Safety
“something bad never happens”
Properties that the system may not violate

Liveness
“something good will eventually happen”
Properties that the system must satisfy

Definition of valid states
No assertions are violated
There are no deadlocks (invalid end states)

Progress is enforced
There are no livelocks (non-progress cycles)

Verification: Show that there is no trace
leading to the “bad” things (deadlocks,
violated invariants, ...)

Verification: Show that there is no (infinite)
loop in which the “good” things do not
happen

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Correctness properties in Promela

‣ Basic assertions

‣ Meta-Labels for identifying

• End states

• Progress states

• Accept states

‣ Never claims
 ... for defining safety and liveness properties

‣ Trace assertions
 ... for defining properties of message channels

29

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

How SPIN checks correctness

30

p1

Processes

Asynchronous interleaving
product of automataPROMELA model

State Space
(Reachability Graph)

s11

s21

s12

s22

DFS
s32

s12

s22

s32

acceptance
cycle

[G.J. Holzmann: “The Model Checker SPIN”, IEEE
Transactions on Software Engineering, 23(5), 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Checking cycles and fairness

‣ SPIN checks for deadlocks and non-progress cycles

‣ There is no way to define relative speed

‣ Isn’t it then possible that one process is infinitely slow and
another one infinitely fast?
... and the slow process will never be able to execute the
next statement?

‣ Therefore SPIN allows to check the model under the
assumption of fairness.

31

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Fairness (1)

‣ There is no assumption about relative execution speed,
thus infinite delays are possible

‣ A fair treatment of the processes in their execution is
expressed by the assumption of finite progress

‣ Any process that can execute a statement will

eventually proceed in executing it.

‣ SPIN supports two variants ...

32

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Fairness (2)

‣ Weak Fairness

If a process has an executable statement whose
executability never changes, then it will eventually execute
that statement

‣ Strong Fairness
If a process has a statement that becomes executable

infinitely often, then it will eventually execute that
statement

33

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Fairness (3)

‣ Example: A caller picks up the receiver, dials a number

(phone call gets executable), the line is busy, the caller
hangs up (phone call is not executable)

34

busy busy busy...

busy busy talk...

...

Weak fairness: he does not need to be served

Strong fairness: he is eventually being served

executable executable executable

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Assertions

‣ Basic assertions assert(expression)

• always executable, violation triggers an error message

• can be used in simulation mode (abort on error)

‣ Channel assertions

• Exclusive send and exclusive receive
 proctype Sender(...) {

 xs ch1; /* only Sender sends to channel ch1 */
 xr ch2; /* only Sender receives from channel ch2 */

 ...
 }

• Validity of xs, xr is checked during verification.

35

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

End state labels

‣ Labels with the prefix end mark a valid end state

‣ Default end states: end of the process code

‣ End state labels enable the verifier to distinguish between
valid and invalid end states

‣ By default, SPIN (in verification mode) checks for invalid
end states

‣ Strict check (spin -q): A system state is valid, if all
processes have reached a valid end state and all message
queues are empty.

36

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Progress state labels

‣ When is a cyclic execution valid?

‣ Statements that constitute a progress can be labeled with

progress state labels.

‣ Progress state labels have the prefix progress

‣ Enabling non-progress checking in the verifier:
 cc -DNP pan.c -o pan
 ./pan -l

‣ Compiler flag -DNP lets SPIN generate a so-called never
claim that checks the non-progress property

37

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Accept state labels

38

‣ Accept states are states that should not be passed
through infinitely often.

‣ Usually used in never claims

‣ Cycles passing through an accept state will be reported as
an error by the verifier.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Dijkstra’s Semaphore

39

public class Semaphore {
 private int count = 1;

 public Semaphore(int count) {
 // if (count > 1) this.count = count;
 }

 public synchronized void P() {
 while (count <= 0)
 try {
 wait();
 } catch(InterruptedException e) {}
 count--;
 }

 public synchronized void V()
 {
 count++;
 notify();
 }
}

probeer te verlagen
(try to decrease)

verhogen (increase)

binary version
(mutex)

Semaphore.java

number of permits, here only 1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

 The Semaphore in Promela

40

mtype {p,v}

chan sema = [0] of {mtype}

active proctype Semaphore() {
 do
 :: sema!p -> sema?v
 od
}

active [3] proctype user() {
 do
 :: sema?p; /* enter critical section */
 skip; /* critical section */
 sema!v; /* leave critical section */
 od
}

semaphore.pml

cf. [Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Correctness of the semaphore

‣ Safety and liveness properties of the semaphore algorithm

‣ Safety: Only one process is in its critical section at any time

‣ Liveness: Whenever a process wants to enter its critical
section, it will eventually be permitted to do so.

• Liveness check: searching for non-progress cycles

41

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Liveness check

42

> spin -a semaphore.pml
> cc -DNP pan.c -o pan
>./pan -l
pan: non-progress cycle (at depth 3)
pan: wrote semaphore.pml.trail

(Spin Version 5.1.7 -- 23 December 2008)
Warning: Search not completed
 + Partial Order Reduction

Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness disabled)
 invalid end states - (disabled by never claim)

State-vector 36 byte, depth reached 10, errors: 1
 4 states, stored
 0 states, matched
 4 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

 Guided simulation

43

> spin -t -p semaphore.pml
Starting Semaphore with pid 0
Starting user with pid 1
Starting user with pid 2
Starting user with pid 3
spin: couldn't find claim (ignored)
 2: proc 0 (Semaphore) line 7 "semaphore.pml" (state 1) [sema!p]
 3: proc 3 (user) line 16 "semaphore.pml" (state 1) [sema?p]
 <<<<<START OF CYCLE>>>>>
 5: proc 3 (user) line 17 "semaphore.pml" (state 2) [(1)]
 7: proc 3 (user) line 18 "semaphore.pml" (state 3) [sema!v]
 8: proc 0 (Semaphore) line 8 "semaphore.pml" (state 2) [sema?v]
 10: proc 0 (Semaphore) line 7 "semaphore.pml" (state 1) [sema!p]
 11: proc 3 (user) line 16 "semaphore.pml" (state 1) [sema?p]
spin: trail ends after 11 steps
#processes: 4
 11: proc 3 (user) line 17 "semaphore.pml" (state 2)
 11: proc 2 (user) line 15 "semaphore.pml" (state 4)
 11: proc 1 (user) line 15 "semaphore.pml" (state 4)
 11: proc 0 (Semaphore) line 8 "semaphore.pml" (state 2)
4 processes created

(SPIN uses the recorded trail here)

considered
as non-
progress
cycle

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Adding labels

44

...
active proctype Semaphore() {
end: do
 :: sema!p ->
progress: sema?v
 od
}
...

semaphore.pml

> ./pan -l
(Spin Version 5.1.7 -- 23 December 2008)
 + Partial Order Reduction

Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness disabled)
 invalid end states - (disabled by never claim)

...

... no more error messages

100% free from assertion
violations and non-prog. cycles

we mark this as
progress state

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Never claims

‣ Expressing temporal claims

e.g. “every system state in which P is true is followed by a
system state in which Q is true”

‣ Notation: never { ... }

‣ The never process is executed at each step

‣ If the specified condition is matching and the never
process reaches an end state, the claim is violated and an

error is reported

45

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Never claims, Example

‣ Checking whether a property p is true

‣ p should never fail:

‣ As long as p is true the never process stays in its do-loop

46

[Holzmann 2003]

never {
 do
 :: !p -> break
 :: else
 od
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Never claims, Example

‣ Checking whether a property p is true

‣ Alternative solutions: With an assertion:

... or as a separate proctype

47

[Holzmann 2003]

never {
 do
 :: assert(p)
 od
}

active proctype monitor()
{
 atomic { !p -> assert(false) }
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Validation of ABP (cntd.)

‣ Correctness of the Alternating Bit Protocol:

• Every message is received at least once

• Every message is accepted at most once

(see also Exercise 2)

‣ 2nd claim already shown by using an assertion:
#define ACCEPT assert(mr==(last_mr+1)%MAX)

‣ We try to express the first claim in Promela
(though it was already implied by the last validation)

‣ But first, we check for non-progress cycles

48

ABP

[Holzmann 1993]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Non-progress loops

‣ The execution sequences in ABP are cyclic
and by default considered to be non-progress cycles

49

> spin -a alternating.pml

> cc pan.c -DNP -o pan

> ./pan -l

pan: non-progress cycle (at depth 14)

pan: wrote alternating.pml.trail

(Spin Version 5.1.7 -- 23 December 2008)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 non-progress cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Adding Labels

50

proctype Receiver(chan in, out)

{ byte mr; /* message data received */

 byte last_mr; /* mr of last error-free msg */

 bit ar; /* alternation bit received */

 bit last_ar; /* ar of last error-free msg */

 do

 ::in?error(mr,ar) -> /* receive error */

 out!ack(last_ar); /* send ack with old bit */

 ::in?data(mr,ar) ->

 out!ack(ar); /* send response */

 if

 ::(ar == last_ar) -> /* bit is not alternating */

 skip /* ...don’t accept */

 ::(ar != last_ar) -> /* bit is alternating */

progress: ACCEPT; /* correct message */

 last_ar=ar; /* store alternating bit */

 last_mr=mr /* save last message */

 fi

 od

}

Accepting a
message is
clearly a
progress

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Disappointing...

‣ There are still non-progress loops

‣ We will have a look at the trail
spin -t -p alternating.pml

51

> spin -a alternating.pml ; cc pan.c -DNP -o pan

> ./pan -l

pan: non-progress cycle (at depth 22)

pan: wrote alternating.pml.trail

...

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The trail

52

> >spin -t -p alternating.pml
Starting :init: with pid 0
spin: couldn't find claim (ignored)
Starting Sender with pid 2
 2: proc 0 (:init:) line 78 "alternating.pml" (state 1) [(run Sender(toS,fromS))]
Starting Receiver with pid 3
 3: proc 0 (:init:) line 79 "alternating.pml" (state 2) [(run Receiver(toR,fromR))]
Starting lower_layer with pid 4
 4: proc 0 (:init:) line 80 "alternating.pml" (state 3) [(run lower_layer(fromS,toS,fromR,toR))]
 6: proc 1 (Sender) line 31 "alternating.pml" (state 1) [mt = ((mt+1)%8)]
 8: proc 1 (Sender) line 32 "alternating.pml" (state 2) [out!data,mt,at]
 10: proc 3 (lower_layer) line 12 "alternating.pml" (state 1) [fromS?data,d,b]
 12: proc 3 (lower_layer) line 15 "alternating.pml" (state 3) [toR!error,0,0]
 14: proc 2 (Receiver) line 56 "alternating.pml" (state 1) [in?error,mr,ar]
 16: proc 2 (Receiver) line 57 "alternating.pml" (state 2) [out!ack,last_ar]
 18: proc 3 (lower_layer) line 17 "alternating.pml" (state 6) [fromR?ack,b]
 20: proc 3 (lower_layer) line 19 "alternating.pml" (state 7) [toS!ack,b]
 22: proc 1 (Sender) line 34 "alternating.pml" (state 3) [in?ack,ar]
 <<<<<START OF CYCLE>>>>>
 24: proc 1 (Sender) line 39 "alternating.pml" (state 7) [else]
 26: proc 1 (Sender) line 40 "alternating.pml" (state 8) [(1)]
 28: proc 1 (Sender) line 42 "alternating.pml" (state 11) [out!data,mt,at]
 30: proc 3 (lower_layer) line 12 "alternating.pml" (state 1) [fromS?data,d,b]
 32: proc 3 (lower_layer) line 15 "alternating.pml" (state 3) [toR!error,0,0]
 34: proc 2 (Receiver) line 56 "alternating.pml" (state 1) [in?error,mr,ar]
 36: proc 2 (Receiver) line 57 "alternating.pml" (state 2) [out!ack,last_ar]
 38: proc 3 (lower_layer) line 17 "alternating.pml" (state 6) [fromR?ack,b]
 40: proc 3 (lower_layer) line 19 "alternating.pml" (state 7) [toS!ack,b]
 42: proc 1 (Sender) line 34 "alternating.pml" (state 3) [in?ack,ar]
spin: trail ends after 42 steps

ABP

no ACCEPT here

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Labeling lower layer progress

53

‣ Distorting messages by the lower layer can lead to cycles

‣ We mark this as progress as well

‣ Finally, SPIN does not detect non-progress cycles any more

proctype lower_layer(chan fromS, toS, fromR, toR)
{ byte d; bit b;

 do
 ::fromS?data(d,b) ->
progress0: if
 :: toR!data(d,b)
 :: toR!error(0,0)
 fi
 ::fromR?ack(b) ->
progress1: if
 :: toS!ack(b)
 :: toS!error(0)
 fi
 od
}

Message distortion
is not desired, it is
only marked as a
normal behaviour!

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Specifying a never claim

‣ To show: Every message is received at least once

‣ There is no infinite sequence of duplicate messages unless

they were distorted

‣ Therefore this should never happen:

The Receiver reaches the state of detecting a duplicate

and visits this state again without having accepted a
valid message.

If there was such a cycle, the receiver would have no
chance to receive a valid message afterwards

54

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Labels used in the claim

55

proctype Receiver(chan in, out)

{ byte mr; /* message data received */

 byte last_mr; /* mr of last error-free msg */

 bit ar; /* alternation bit received */

 bit last_ar; /* ar of last error-free msg */

 do

 ::in?error(mr,ar) -> /* receive error */

 out!ack(last_ar); /* send ack with old bit */

 ::in?data(mr,ar) ->

 out!ack(ar); /* send response */

 if

 ::(ar == last_ar) -> /* bit is not alternating */

dup: skip /* ...don’t accept */

 ::(ar != last_ar) -> /* bit is alternating */

progress: ACCEPT; /* correct message */

 last_ar=ar; /* store alternating bit */

 last_mr=mr /* save last message */

 fi

 od

}

duplicate
received

correct msg.
received

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Never Claim (1)

56

‣ Never: The Receiver reaches the state
of detecting a duplicate and visits this

state again without having accepted a
valid message.

never {
accept: do
 :: do
 ::!Receiver@dup && !Receiver@progress
 :: Receiver@dup -> break
 od;
 :: do
 :: Receiver@dup
 ::!Receiver@dup && !Receiver@progress -> break
 od
 od
}

ABP

switch to the 2nd
part of the claim

as long as the Receiver is in
other states: stay in the loop

The Receiver leaves the
dup state without visiting
the progress state

¬dup ∧ ¬progress

dup*

progress

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Never Claim (2)

57

‣ Unfortunately this gives an error:

‣ A look at the trail shows the reason: Distorting messages

can lead to repeated duplicates

> spin -a alternating.pml ; cc pan.c -o pan -DNOREDUCE
> ./pan -a
pan: acceptance cycle (at depth 22)
pan: wrote alternating.pml.trail

ABP

 <<<<<START OF CYCLE>>>>>
 24: proc 1 (Sender) line 41 "alternating.pml" (state 7) [else]
 26: proc 1 (Sender) line 42 "alternating.pml" (state 8) [(1)]
 28: proc 1 (Sender) line 44 "alternating.pml" (state 11) [out!data,mt,at]
 30: proc 3 (lower_layer) line 12 "alternating.pml" (state 1) [fromS?data,d,b]
 32: proc 3 (lower_layer) line 16 "alternating.pml" (state 3) [toR!error,0,0]
 34: proc 2 (Receiver) line 58 "alternating.pml" (state 1) [in?error,mr,ar]
 36: proc 2 (Receiver) line 59 "alternating.pml" (state 2) [out!ack,last_ar]
 38: proc 3 (lower_layer) line 18 "alternating.pml" (state 6) [fromR?ack,b]
 40: proc 3 (lower_layer) line 21 "alternating.pml" (state 7) [toS!ack,b]
 42: proc 1 (Sender) line 36 "alternating.pml" (state 3) [in?ack,ar]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Never Claim (3)

58

Graphical representation:
The acceptance cycle

in the message sequence
chart generated by XSPIN

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Never Claim (4)

59

‣ Never: The Receiver reaches the state of detecting a
duplicate and visits this state again without having

accepted a valid message ... unless there was an error

never {
accept: do
 :: do
 ::!Receiver@dup && !Receiver@progress0
 && !lower_layer@progress0
 :: Receiver@dup -> break
 od;
 :: do
 :: Receiver@dup
 ::!Receiver@dup && !Receiver@progress0
 && !lower_layer@progress0 -> break
 od
 od
}

ABP

Reference to the
process state

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Remote Referencing

60

‣ References to process state labels and variables are
needed in never claims

‣ Reference to a process state:
 procname[pid]@label

‣ Reference to a local variable:
 procname[pid]:variable

‣ pid = process ID (instantiation number), can be omitted if
there is only a single instance of a proctype.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Predefined variables and functions

61

Value or Function Description Application

_pid

_ (underscore)

Process ID of the local process
global write-only variable, used for
scratch values

used in proctype
declarations

_np

_last

true, iff the system is in a non-
progress state (all processes are
currently not in a progress state)
PID of the process that executed
the last step

used in never claims

pc_value(pid)

enabled(pid)

internal state number of the
currently active process
true iff the current process has an
executable statement

used in never claims

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Check for non-progress loops

‣ SPIN’s built-in check for non-progress loops uses a never
claim using the _np variable:

62

never { /* non-progress: <>[] _np */
 do
 :: skip
 :: _np -> break
 od;
accept: do
 :: _np
 od
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Note on never claims

‣ Temporal conditions in the never claim must be free of
side effects

• no assignments

• no receive or send operations

‣ The never process monitors system behavior

63

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Trace Assertions

‣ Trace assertions describe correctness properties of
message channels. They apply only to send and receive

operations on message channels.

‣ Example:

‣ Trace assertions are used to specify valid event sequences

‣ Only simple send and receive operations are allowed

64

trace { do
 :: out!data; in?ack
 od }

This assertion specifies that send and receive events are alternating
and messages are of type data and ack.

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Trace Assertions and Never Claims

65

Never Claim Trace Assertion

Specifies invalid system states

Monitors system states globally

Executed synchronosly with the
system

Can be non-deterministic

Specifies event sequences

Monitors a subset of events

Executed only if monitored events
occur

Must be deterministic

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview of correctness claims

66

Type of claim Correctness property

Assertion (statement) the specified expression must not evaluate to false

End state label the system must not terminate unless all processes have
terminated or stopped at one of the labeled end states

Progress label the system must not execute forever without visiting at
least one of the labeled progress states infinitely often

Accept state label the system must not execute forever while visiting at
least one of the labeled accept states infinitely often

Never claim the system must not show behavior specified in the
claim

Trace assertion the system must not produce event traces other than
specified

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Lessons learned

‣ Validation includes checks for different properties
(absence of deadlocks, non-progress loops, ...)

‣ Basic correctness properties can be expressed by
assertions and special labels in Promela

(easy to define, efficiently checkable)

‣ Temporal claims refer to the control flow. They have to be

specified in a never claim

67

