
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

07 - Simulation, Part II

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg2

Overview

‣ In the first part of this chapter:

• Discrete-event simulation

‣ In this part:

• Network simulation

• The network simulator OMNeT++

• Simulation models for wireless networks

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

3

OMNeT++

‣ The simulation environment OMNeT++

• Discrete event simulator

• Component-based

• Provides the basic tools to write simulations

- simulation kernel (event processing)

- utility classes (RNG, statistics collection)

• Public-source (free for academic use)

‣ OMNeT++ is a general purpose tool and not specifically
designed for network simulations. Components for network
simulations are provided by frameworks.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

4

The User Interface

OMNeT version 3

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

5

Basic Principles (1)

‣ A simulation model consists of modules
(Modules are communicating FSMs)

‣ Modules communicate by passing messages over
connections (links)

Module A Module B

S1 S2

compound module

simple modules

Network

connection

gate

nested
modules:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

6

Basic Principles (2)

‣ Modules implement application-specific behaviour

‣ Modules are C++ objects

‣ Connections are defined using the NED
(network topology description) language

‣ Modules communicate by exchanging messages.
The reception of a message is an event

Module A Module B
msg

simulation kernel

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

7

Why do we need gates?

‣ Gates are well-defined interfaces

‣ Functionality inside the module is independent of the

connections

 → Modules can be treated as black boxes

 → Modules are exchangable (e.g. layer of a protocol stack)

‣ Modules send messages to outgoing gates

‣ ...and also directly to other modules (can be useful when

simulating a wireless medium where connections are

created dynamically)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

How to Write a Simulation (1)

The general procedure:

‣ Implementation

• Define module behaviour (event generation, event
processing)

• Define message format

‣ Simulation setup:

• Define parameters

• Define metrics to be observed during simulation

8

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

9

How to Write a Simulation (2)

1. Define modules and network
topology (.ned)

2. Define messages (.msg)

3. Implement the behaviour of
simple modules (.cc)

4. Compile the project

5. Define the parameters for
the simulation (omnetpp.ini)

.ned

*_n.cc

nedtool

C++ libraries

Linker

executable

.msg

*_m.cc

opp_msgc

.cc

.ini

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

10

Step 1. Defining Modules

‣ Modules are defined
using the NED language
(OMNeT specific)

‣ GNED - a graphical
editor for NED files

‣ Understanding the NED
language is not that
difficult...

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

11

Step 1. Defining Modules (2)

module Node
 parameters:
 address : numeric;
 gates:
 in: in[];
 out: out[];
 submodules:
 app: App;
 routing: Routing;
 gatesizes:
 in[sizeof(in)],
 out[sizeof(out)];
 connections:
 routing.localOut --> app.in;
 routing.localIn <-- app.out;
 for i=0..sizeof(in)-1 do
 routing.out[i] --> out[i];
 routing.in[i] <-- in[i];
 endfor;
endmodule

app

routing

Node

inout

in0 out0 inn outn

localOutlocalIn

...

in0 out0 inn outn...

address

(see ../samples/routing)

Example:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

12

Step 1. Defining a Network

import "node";

module Net60
 submodules:
 rte: Node[57];
 parameters:
 address = index;
 connections nocheck:
 rte[0].out++ --> rte[1].in++;
 rte[0].in++ <-- rte[1].out++;
 ...
 ...
 rte[0].out++ --> rte[1].in++;
 rte[0].in++ <-- rte[1].out++;
endmodule

network net60 : Net60
endnetwork

Compound module containing the nodes:

Network definition:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

13

Step 2. Defining a Network (2)

‣ nedtool creates C++ classes (if not loaded dynamically)

node.ned node_n.cc

module Node
 parameters:
 address : numeric;
 gates:
 in: in[];
 out: out[];
 submodules:
 app: App;
 routing: Routing;
 gatesizes:
 in[sizeof(in)],
 out[sizeof(out)];
 connections:
 routing.localOut --> app.in;
 routing.localIn <-- app.out;
 for i=0..sizeof(in)-1 do
 routing.out[i] --> out[i];
 routing.in[i] <-- in[i];
 endfor;
endmodule

nedtool

[...]

ModuleInterface(Node)
 // parameters:
 Parameter(address, ParType_Numeric)
 // gates:
 Gate(in[], GateDir_Input)
 Gate(out[], GateDir_Output)
EndInterface

Register_ModuleInterface(Node);

class Node : public cCompoundModule
{
 public:
 Node() : cCompoundModule() {}
 protected:
 virtual void doBuildInside();
};

Define_Module(Node);

[...]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

14

Step 2. Defining Messages

‣ Messages are C++ classes and either of class cMessage or
derived from this class

‣ Messages are handled in a module by the method
handleMessage(cMessage *msg)

‣ Messages are sent to other modules by the method
send(cMessage *msg, const char *outGateName)

‣ Timers are also realized by messages (self-messages)

‣ Messages can be defined in a MSG file. Example:
message Packet
{
 fields:
 int srcAddr;
 int destAddr;
 int hopCount;
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

15

Step 2. Defining Messages (2)

‣ Define the fields in a .mgs file and let opp_msgc do the rest:

message Packet
{
 fields:
 int srcAddr;
 int destAddr;
 int hopCount;
}

class Packet : public cMessage
{
 protected:
 int srcAddr_var;
 int destAddr_var;
 int hopCount_var;

 public:
 Packet(const char *name=NULL, int kind=0);
 Packet(const Packet& other);
 virtual ~Packet();
 Packet& operator=(const Packet& other);
 virtual cPolymorphic *dup() const {
 return new Packet(*this);}
 virtual void netPack(cCommBuffer *b);
 virtual void netUnpack(cCommBuffer *b);

 virtual int getSrcAddr() const;
 virtual void setSrcAddr(int srcAddr_var);
 virtual int getDestAddr() const;
 virtual void setDestAddr(int destAddr_var);
 virtual int getHopCount() const;
 virtual void setHopCount(int hopCount_var);
};

packet.msg packet_m.h

msgc

getter and setter methods
are automatically generated

‣ Derive a class from cSimpleModule

‣ Redefine the methods (virtual methods of cModule)
• initialize() e.g., to define state variables
• handleMessage(cMessage *msg)

• finish() e.g., for statistics collection

#include <omnetpp.h>
#include "packet_m.h”

class Routing : public cSimpleModule {
 [...]
}

Define_Module(Routing);

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

16

Step 3. Module Implementation

← include msg definitions

← register the module class

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

17

Step 3. Event Handling

‣ Events are generated by sending messages from one
module to other modules oder to itself

‣ Event handling is performed by
handleMessage(cMessage *msg)

‣ Message processing depends on the state of a module,
but also changes the state

‣ State variables are members of the module class

‣ Message sending (event generation) methods:

- send(cMessage* msg, int gateid)

- scheduleAt(simtime_t t, cMessage* msg)

- cancelEvent(cMessage* msg)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

18

Example of message handling
void Routing::handleMessage(cMessage *msg)
{
 Packet *pk = check_and_cast<Packet *>(msg);
 int destAddr = pk->getDestAddr();

 if (destAddr == myAddress)
 {
 ev << "local delivery of packet " << pk->name() << endl;
 send(pk,"localOut");
 return;
 }

 RoutingTable::iterator it = rtable.find(destAddr);
 if (it==rtable.end())
 {
 ev << "address " << destAddr << " unreachable, discarding packet "
 << pk->name() << endl;
 delete pk;
 return;
 }

 int outGate = (*it).second;
 ev << "forwarding packet " << pk->name() << " on gate id=" << outGate << endl;
 pk->setHopCount(pk->getHopCount()+1);

 send(pk, outGate);
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

19

Step 3. Initialization and Finishing

‣ initialize() is the right place to initialize variables or
create initial events, e.g.:

void AModule::initialize() {

 scheduleAt(simTime + 0.5, new cMessage);

 }

‣ In the constructor not all information may be available at
runtime (e.g. the total number of nodes)

‣ finish() is the counterpart to initalize()

‣ it is called at the end of the simulation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

20

Step 4. Compiling the project

‣ A Makefile can be created by opp_makemake
• from the source files in the current directory
• with the necessary settings (compiler flags, libraries)

‣ In the simplest case (one directory), call
opp_makemake -N
make

-N load NED files dynamically
-I additional include directories (when using frameworks)
-u specify user interface

 -u Tkenv for the GUI (default)

 -u Cmdenv for the command line

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

21

Step 5. Setting Simulation
Parameters

‣ Create a file “omnetpp.ini”

‣ Contents:

• selection of the network

• pre-loaded NED files

• selection of the random number generator

• parameters

‣ Example:

[General]
preload-ned-files=*.ned
network=net60

[Parameters]
net60.**.destAddresses="1 50"

wildcards

load all NED files dynamically

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

22

How to write a simulation

1. Define modules and network
topology (.ned)

2. Define messages (.msg)

3. Implement the behaviour of
simple modules (.cc)

4. Compile the project (Makefile)

5. Define the parameters for
the simulation (omnetpp.ini)

.ned

*_n.cc

nedtool

C++ libraries

Linker

executable

.msg

*_m.cc

opp_msgc

.cc

opp_makemake
make

.ini

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

23

Running Simulations

‣ Calling the executable
starts the GUI (Tkenv)
or the command line
(Cmdenv) version

‣ Command-line switches
for the executable:

-f <inifile> specifies an ini file (default: omnetpp.ini)

-r <runs> specifies the runs to be executed (e.g. 1,2,4-6)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

24

Running Several Simulations

‣ Several runs started by a shell script

‣ Define parameters in the [Run 1], [Run 2],... sections of the ini file or

define variable parameters in different ini files, e.g. 10nodes.ini:

‣ Start the simulation for each ini file

#! /bin/sh
for ((i=1; $i<50; i++)); do
 ./wireless -f runs.ini -r $i
done

include universal.ini

[Parameters]
Wireless.n = 10

← $i = run number

← inclusion of common settings

#! /bin/tcsh
foreach f (*.ini)
 nice +15 ./simulation -f $f >! $f:r.log
end

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

25

Random Number Generators

‣ Standard RNG: Mersenne Twister with a period of 219937 - 1

‣ Several predefined distributions (uniform, exponential,
normal, Pareto, ...)

‣ The number of RNGs is set in the ini file
(multiple RNGs to avoid unwanted correlation)

‣ Seeds are automatically selected
(based on RNG number and run number)

‣ RNGs can be mapped to modules
e.g. the default RNG for the channel module is RNG No. 1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

26

GUI Features

event list

module list

inspector

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

27

Inspectors

‣ Members of module classes derived from cObject (e.g.,
cArray, cMessage) are displayed in the inspector:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

28

Statistics collection

‣ Record scalar statistics in the finish() method (→ .sca file)

‣ Record output vectors (→ .vec file)

AServer::finish() {

 recordScalar("channel utilization",currentChannelUtilization);

}

AServer::initialize() {
 cOutVector channelUtilizationVector;
}

AServer::handleMessage(cMessage* msg) {

 channelUtilizationVector.record(currentChannelUtilization);

}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

29

Statistics evaluation

‣ Scalar values of different runs are appended to the .sca file

‣ Scalar files (.sca) can be processed by the scalars tool

‣ Vector files (.vec) can be processed by the plove tool

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

30

Resources

‣ www.omnetpp.org

‣ OMNeT++ User Community Wiki: www.omnetpp.org/

pmwiki

• Installation instructions

• description of frameworks

‣ Documentation (“doc” directory of the distribution):

• User Manual (html or PDF, 230 pages)

• API documentation (html, doxygen/neddoc)

http://www.omnetpp.org/pmwiki
http://www.omnetpp.org/pmwiki
http://www.omnetpp.org/pmwiki
http://www.omnetpp.org/pmwiki

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Simulating a Queue

31

see <omnet>/samples/fifo

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Network

32

module FifoNet
 submodules:
 gen: FFGenerator;
 display: "p=89,100;i=block/source";
 fifo: FFBitFifo;
 display: "p=209,100;i=block/queue;q=queue";
 sink: FFSink;
 display: "p=329,100;i=block/sink";
 connections:
 gen.out --> fifo.in;
 fifo.out --> sink.in;
endmodule

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The load generator

33

void FFGenerator::initialize()
{
 sendMessageEvent = new cMessage("sendMessageEvent");
 scheduleAt(0.0, sendMessageEvent);
}

void FFGenerator::handleMessage(cMessage *msg)
{
 ASSERT(msg==sendMessageEvent);

 cMessage *m = new cMessage("job");
 m->setLength(par("msgLength"));
 send(m, "out");

 scheduleAt(simTime()+(double)par("sendIaTime"),
 sendMessageEvent);
}

[Run 1]
description="low job arrival rate"
**.gen.sendIaTime = exponential(0.1)

parameter from the omnetpp.ini file

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Queue

34

void FFAbstractFifo::handleMessage(cMessage *msg)
{
 if (msg==endServiceMsg) {
 endService(msgServiced);
 if (queue.empty()) {
 msgServiced = NULL;
 } else {
 msgServiced = (cMessage *) queue.pop();
 simtime_t serviceTime = startService(msgServiced);
 scheduleAt(simTime()+serviceTime, endServiceMsg);
 }
 }
 else if (!msgServiced) {
 arrival(msg);
 msgServiced = msg;
 simtime_t serviceTime = startService(msgServiced);
 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }
 else {
 arrival(msg);
 queue.insert(msg);
 }
}

timer event

timer event (job is finished)

delete pointer to current job

store current job

set timer for finishing current job

else... incoming message (job), not a timer

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Sink

35

void FFSink::handleMessage(cMessage *msg)
{
 double d = simTime()-msg->creationTime();

 ev << "Received " << msg->name() << ", queueing time: "
 << d << "sec" << endl;
 qstats.collect(d);
 qtime.record(d);
 delete msg;

}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Simulation of Wireless Networks

‣ Characteristics of wireless networks

• Wireless links: packet errors, packet loss, delay

• Mobility: links are not permanent

‣ Required:

• Distinct channel model

• Mobility model

• In mobile scenarios: dynamic link management

36

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Wireless Channel Simulation

‣ Channel model includes various effects of wireless
transmissions

37

Host A

Transmission Medium

Appl. Layer:
Traffic Generator

MyProtocol

MAC Layer

Host B
Appl. Layer:

Traffic Generator

MyProtocol

MAC Layer

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Wireless Channel Simulation

‣ Wireless transmission

• Radio-wave propagation: calculating the received
signal strength

- based on large-scale path loss,
small-scale and multipath fading

• Interference: calculating packet loss

- Signal-to-noise/interference ratio

38

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Radio-wave Propagation

‣ Impact on radio-wave propagation:

• Attenuation by distance

• Reflection on obstacles

• Diffraction by obstacles with sharp edges

• Scattering by objects which are small compared to the
wavelength

39

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Towards Propagation Models

‣ Effects that can be observed

• large-scale path loss

- attenuation with increased distance

• small-scale fading

- rapid changes in signal strength (while time and
distance variation is small)

- random frequency modulation (Doppler shifts on
multipath signals)

- Echoes by multipath propagation delays

‣ Propagation models try to capture (some of) these effects ...

40

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Propagation models

‣ Elementary models:

• Free-space propagation model

• Two-ray ground reflection model

• Shadowing model

‣ Empirical models

• Outdoor models (main effect: ground reflection)

• Indoor models (obstacle-dependent path loss)

‣ Raytracing

41

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Free Space Propagation

‣ Line-of-sight without obstacles

‣ Received signal strength in distance d:

• Transmission power Pt

• Transmitter gain Gt, receiver gain Gr

• Wavelength L

• Speed of light

42

Pr(d) =
PtGtGrλ2

(4π)2d2L

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Two-way Ground Reflection

‣ Attenuation of the direct path signal by a reflected signal:

ht, hr = height of sender and receiver

43

Pr(d) =
PtGtGrht

2hr
2λ2

d4L

t r

hr
ht

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Log-distance Path Loss

‣ Generalization of the previous models: Path loss is
proportional to distance with some exponent

‣ In dB (logarithmic scale):

‣ Reference path loss at d0 through measurements or free
space model.

44

PLdB(d) ∝
(

d

d0

)β

PL(d)[dB] = PL(d0) + 10 β log
(

d

d0

)

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Path Loss Exponents

‣ Empirical results for different environments

‣ There is a significant difference between line-of-sight and
non-LoS connections!

45

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Environment Path loss exponent

Free space
Urban area cellular radio
Urban area cellular with shadowing
Indoor, line-of-sight
Indoor obstructed
Indoor, factories, obstructed

2
2.7 - 3.5
3 - 5
1.6 - 1.8
4 - 6
2 - 3

‣ The log-normal shadowing model includes path loss and
Gaussian fading

‣ PL’(d) is a random variable with normal distribution

‣ Receiver signal strength: Pr’(d) = Pt - PL’(d)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Log-normal Shadowing (1)

46

mean path loss random variation

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

PL′(d)[dB] = PL(d) + Xσ

= PL(d0) + 10 β log
(

d

d0

)
+ Xσ

‣ The Q-function (tail probability of a normal distribution) can
be used to determine the probability of a succesful
reception, i.e. signal strength above receiver threshold γ.

‣ Definition of the Q-function:

‣ Probability of successful reception:

Q(x) =
1√
2π

∫ ∞

x
exp

(
−u2

2

)
du

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Log-normal Shadowing (2)

47

[T.S. Rappaport: Wireless Communications Principles and Practice, 2/e]

Pr[P′
r(d) > γ] = Q

(
γ − Pr(d)

σ

)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Mobility Models

‣ Determine movement of network nodes

‣ Deterministic models: mobility traces

‣ Random models: random choice of direction, speed, ...

‣ Level of detail

• Microscopic

• Macroscopic

• Aggregated behaviour (fluid flow)

48

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

49

‣ Brownian Motion (microscopic view)

• Velocity and movement direction are chosen randomly and uniformly
from [vmin,vmax] and [0,π]

‣ Random Walk

• macroscopib view

• e.g. for cellular networks

• random choice of next cell
(among neighboring ones)

• sojourn probability
[Camp et al. 2002]

Brownian Motion, Random Walk

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

50

[Camp et al. 2002]

[Johnson, Maltz 1996]

Random Waypoint Mobility Model

‣ Movement towards a randomly chosen target point

‣ Velocity randomly and uniformly from [vmin,vmax]

‣ Wait time if target is reached

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Problems of the RWP Model

‣ Parameters of the Random Waypoint Model: min/max
speed and pause time.

‣ What we expect: Average speed is (vmin + vmax)/2

‣ This is wrong!

‣ Reasons:

• The next waypoint and thus the travel distance is
chosen independently of the speed. A lower speed
causes a lower average speed, because the node
travels a longer time with low speed

• The longer the simulation runs, the more time is spent in
slower trips

51

[Yoon, Liu, Noble: “Random Waypoint Considered Harmful”, INFOCOM 2003]

‣ Tuning parameter for randomness

‣ Velocity:

‣ Direction:

[Camp et al. 2002]

α=0.75

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

52

Gauss-Markov Mobility Model
[Liang, Haas 1999]

mean random variable
gaussian distribution

tuning factor

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

53

Simulation of Wireless Networks
with OMNeT++

‣ Modules for wireless network simulations are provided by
frameworks:

• Mobility Framework (mobility-fw.sourceforge.net,
wiki.github.com/mobility-fw/mf-opp4)

- Support for node mobility and a wireless medium
(dynamic connection management)

- Modules for 802.11, CSMA

• INET Framework (inet.omnetpp.org)

- IP, TCP/UDP, OSPF, RIP

- Ethernet, 802.11, PPP, ...

- Support for wireless protocols and mobility
(based on the Mobility Framework)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

54

Mobility Framework

‣ Simulation of the wireless medium:

• Module ChannelControl

• Dynamic link assignment: Gates and connections are
created dynamically, if a node is added or moves

• Path loss and SIR calculation (based on distance)

‣ Mobility

• Nodes have (geographical) positions

• Various mobility models (subclasses of the
BasicMobility module)

• The position is changed every update interval (triggered
by self-messages)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

55

ChannelControl

‣ Module for the simulation

of the wireless medium

‣ Links between the nodes
are created dynamically

‣ PHY is connected to
ChannelControl

ChannelControl

Host

PHY

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

On the Pitfalls of Simulation (1)

‣ Simulating Internet Protocols:

• Complexity of the Internet topology: How to create
realistic models?

• Diversity of bandwidth, routers, protocols, ...

• Other sources of traffic (traffic diversity: UDP, TCP, ...)

• Load patterns: How to model the application layer?

56

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

On the Pitfalls of Simulation (2)

‣ Simulating Wireless Networks:

• Too many effects on radio propagation to be considered
in a simulation model.

• Environment models: Significant differences between
direct line-of-sight and non line-of-sight transmission

• Mobility models: What is a realistic mobility pattern?
Some models have unwanted side effects on the
simulation results.

57

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

On the Pitfalls of Simulation (3)

‣ In general:

• Inappropriate model abstraction

• Bad pseudo random number generators, bad seed
selection

• Simulation time not sufficient

• Inappropriate aggregation of statistical data

58

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Simulation Practice

‣ Current simulators offer a lot of environmental models and
protocols which increase the complexity

‣ There is a trend towards leaner models:

59

[I. Stojmenovic: Simulations in Wireless Sensor and Ad Hoc
Networks, IEEE Communications Magazine, Dec. 2008]

Problem Current practice New advice

Model complexity Complex realistic modeling Preserve simplicity where
possible. Focus on effects that
have an impact on the protocol
behaviour

Simulation parameters Scenarios with complex
parameters

Start with a simple model, add
more parameters later

Simulation procedure Build complex simulation model
and perform simulations

Parallel advance of modeling,
simulation and protocol design

