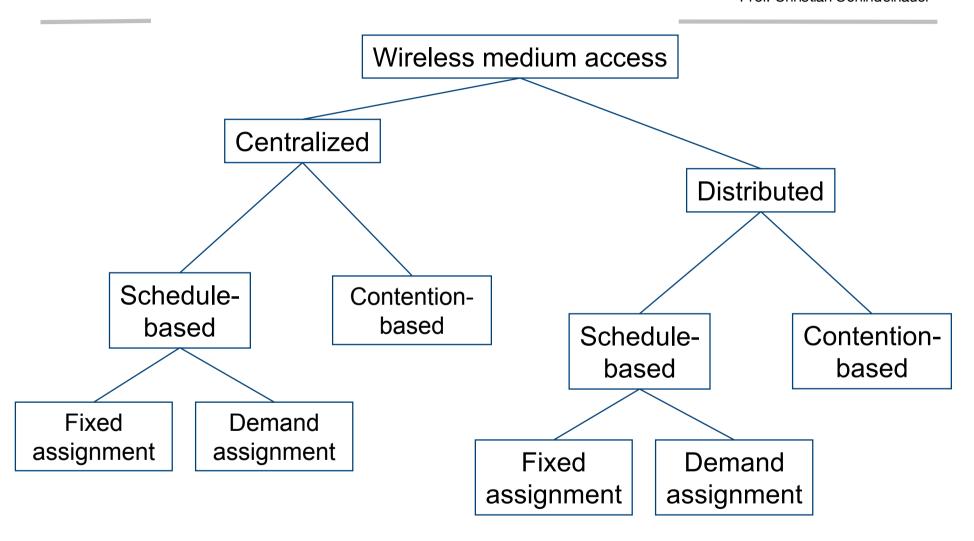
Wireless Sensor Networks 10th Lecture 28.11.2006

University of Freiburg
Computer Networks and Telematics
Prof. Christian Schindelhauer

Christian Schindelhauer schindel@informatik.uni-freiburg.de



Medium Access Control (MAC)

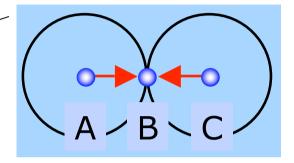
- ➤ Controlling when to send a packet and when to listen for a packet are perhaps the two most important operations in a wireless network
 - Especially, idly waiting wastes huge amounts of energy
- > This chapter discusses schemes for this medium access control that are
 - Suitable to mobile and wireless networks
 - Emphasize energy-efficient operation

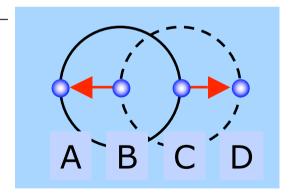
Main options

Overview

- ➤ Principal options and difficulties
- > Contention-based protocols
- > Schedule-based protocols
- **➢IEEE 802.15.4**

Overview


- ➤ Principal options and difficulties
- ➤ Contention-based protocols
 - MACA
 - S-MAC, T-MAC
 - Preamble sampling, B-MAC
 - PAMAS
- > Schedule-based protocols
- **≻IEEE 802.15.4**


Problems for the MAC-Protocol

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

> Hidden Terminal Problem

> Exposed Terminal Problem

Distributed, contentionbased MAC

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Basic ideas for a distributed MAC

- ALOHA no good in most cases
- Listen before talk (Carrier Sense Multiple Access, CSMA) better, but suffers from sender not knowing what is going on at receiver, might destroy packets despite first listening for a
- ⇒ Receiver additionally needs some possibility to inform possible senders in its vicinity about impending transmission (to "shut them up" for this duration

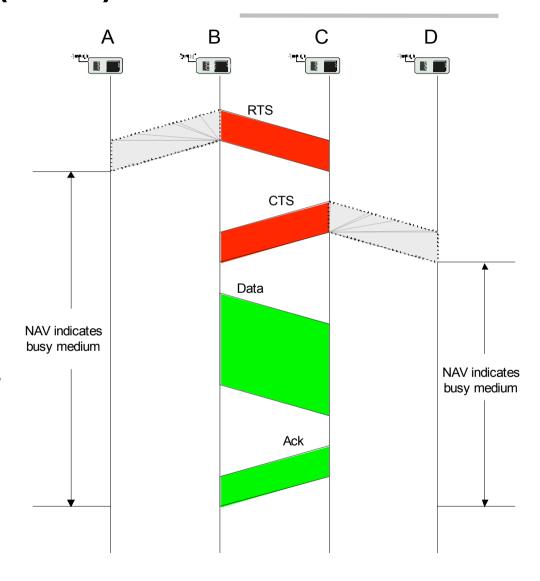
Hidden terminal scenario:

Also: recall exposed terminal scenario

Wireless Sensor Ne

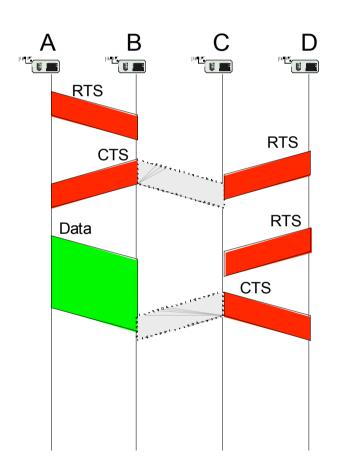
Also: recall exposed terminal scenario

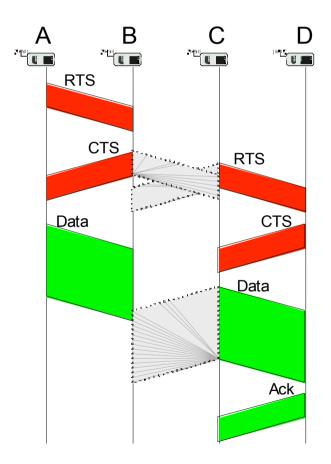
Main options to shut up senders


- > Receiver informs potential interferers while a reception is on-going
 - By sending out a signal indicating just that
 - Problem: Cannot use same channel on which actual reception takes place
 - ⇒ Use separate channel for signaling
 - Busy tone protocol
- > Receiver informs potential interferers before a reception is on-going
 - Can use same channel
 - Receiver itself needs to be informed, by sender, about impending transmission
 - Potential interferers need to be aware of such information, need to store it

Multiple Access with Collision Avoidance (MACA)

- ➤ Sender B asks receiver C whether C is able to receive a transmission


 Request to Send (RTS)
- Receiver C agrees, sends out a Clear to Send (CTS)
- ➤ Potential interferers overhear either RTS or CTS and know about impending transmission and for how long it will last
 - Store this information in a
 Network Allocation Vector
- > B sends, C acks
- ⇒ MACA protocol (used e.g. in IEEE 802.11)



RTS/CTS

- >RTS/CTS ameliorate, but do not solve hidden/exposed terminal problems
- > Example problem cases:

MACA Problem: Idle listening

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

> Need to sense carrier for RTS or CTS packets

- In some form shared by many CSMA variants; but e.g. not by busy tones
- Simple sleeping will break the protocol

> IEEE 802.11 solution: ATIM windows & sleeping

- Basic idea: Nodes that have data buffered for receivers send traffic indicators at pre-arranged points in time
- Receivers need to wake up at these points, but can sleep otherwise

> Parameters to adjust in MACA

- Random delays how long to wait between listen/transmission attempts?
- Number of RTS/CTS/ACK re-trials?

– ...

MACA Problem: Idle listening

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Need to sense carrier for RTS or CTS packets

- In some form shared by many CSMA variants; but e.g. not by busy tones
- Simple sleeping will break the protocol

> IEEE 802.11 solution: ATIM windows & sleeping

- Basic idea: Nodes that have data buffered for receivers send traffic indicators at pre-arranged points in time
- Receivers need to wake up at these points, but can sleep otherwise

> Parameters to adjust in MACA

- Random delays how long to wait between listen/transmission attempts?
- Number of RTS/CTS/ACK re-trials?

— ...

Centralized medium access

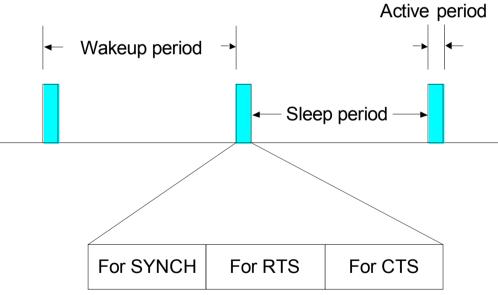
- > Idea: Have a central station control when a node may access the medium
 - Example: Polling, centralized computation of TDMA schedules
 - Advantage: Simple, quite efficient (e.g., no collisions), burdens the central station
- ➤ Not directly feasible for non-trivial wireless network sizes
- ➤ But: Can be quite useful when network is somehow divided into smaller groups
 - Clusters, in each cluster medium access can be controlled centrally compare Bluetooth piconets, for example
- ⇒ Usually, distributed medium access is considered

Schedule- vs. contentionbased MACs

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

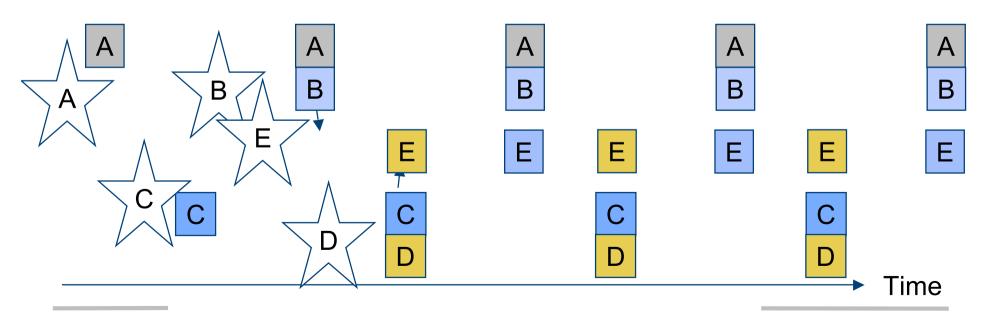
Schedule-based MAC

- A schedule exists, regulating which participant may use which resource at which time (TDMA component)
- Typical resource: frequency band in a given physical space (with a given code, CDMA)
- Schedule can be fixed or computed on demand
 - Usually: mixed difference fixed/on demand is one of time scales
- Usually, collisions, overhearing, idle listening no issues
- Needed: time synchronization!

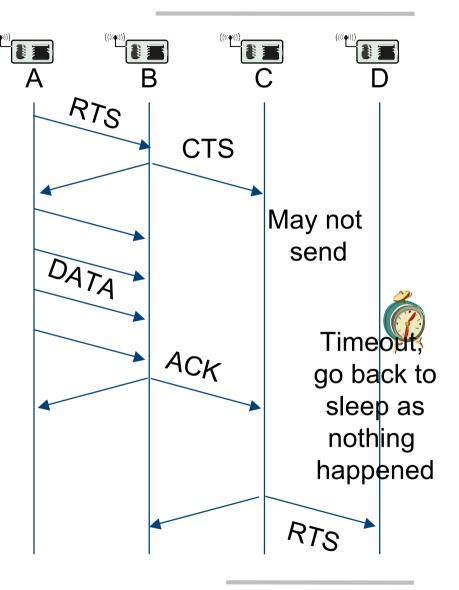

Contention-based protocols

- Risk of colliding packets is deliberately taken
- Hope: coordination overhead can be saved, resulting in overall improved efficiency
- Mechanisms to handle/reduce probability/impact of collisions required
- Usually, *randomization* used somehow

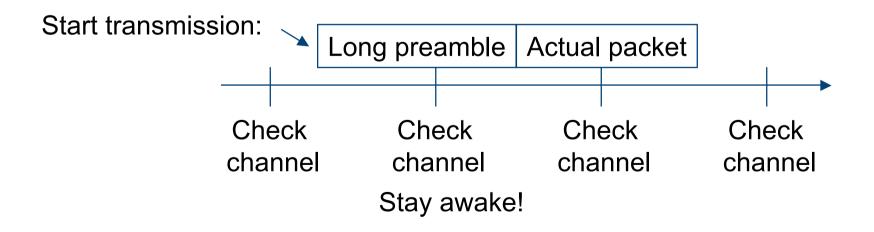
Sensor-MAC (S-MAC)


- >MACA's idle listening is particularly unsuitable if average data rate is low
 - -Most of the time, nothing happens
- >Idea: Switch nodes off, ensure that neighboring nodes turn on simultaneously to allow packet exchange (rendez-vous)
 - -Only in these *active periods*, packet exchanges happen
 - Need to also exchange wakeup schedule between neighbors
 - -When awake, essentially perform RTS/CTS
- **≻Use SYNCH, RTS, CTS phases**

S-MAC synchronized islands


- ➤ Nodes try to pick up schedule synchronization from neighboring nodes
- > If no neighbor found, nodes pick some schedule to start with
- ➤ If additional nodes join, some node might learn about two different schedules from different nodes
 - "Synchronized islands"
- ➤ To bridge this gap, it has to follow both schemes

Timeout-MAC (T-MAC)


- ➢ In S-MAC, active period is of constant length
- What if no traffic actually happens?
 - Nodes stay awake needlessly long
- Idea: Prematurely go back to sleep mode when no traffic has happened for a certain time (=timeout)! T-MAC
 - Adaptive duty cycle!
- One ensuing problem: Early sleeping
 - C wants to send to D, but is hindered by transmission A! B
 - Two solutions exist homework!

Preamble Sampling

- ➤ So far: Periodic sleeping supported by some means to synchronize wake up of nodes to ensure rendez-vous between sender and receiver
- ➤ Alternative option: Don't try to explicitly synchronize nodes
 - Have receiver sleep and only periodically sample the channel
- ➤ Use long preambles to ensure that receiver stays awake to catch actual packet
 - Example: WiseMAC

B-MAC

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Combines several of the above discussed ideas

- Takes care to provide practically relevant solutions

> Clear Channel Assessment

- Adapts to noise floor by sampling channel when it is assumed to be free
- Samples are exponentially averaged, result used in gain control
- For actual assessment when sending a packet, look at five channel samples – channel is free if even a single one of them is significantly below noise
- Optional: random backoff if channel is found busy

➤ Optional: Immediate link layer acknowledgements for received packets

B-MAC II

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

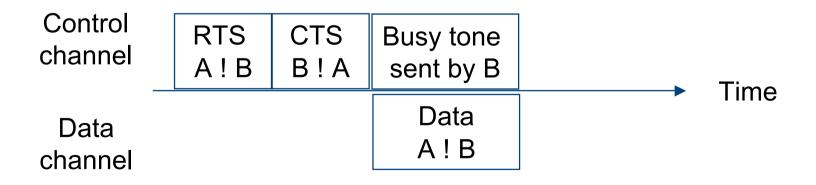
≻ Low Power Listening (= preamble sampling)

- Uses the clear channel assessment techniques to decide whether there is a packet arriving when node wakes up
- Timeout puts node back to sleep if no packet arrived

>B-MAC does not have

- Synchronization
- RTS/CTS
- Results in simpler, leaner implementation
- Clean and simple interface
- ➤ Currently: Often considered as the default WSN MAC protocol

Power Aware Multi-Access with Signaling – PAMAS

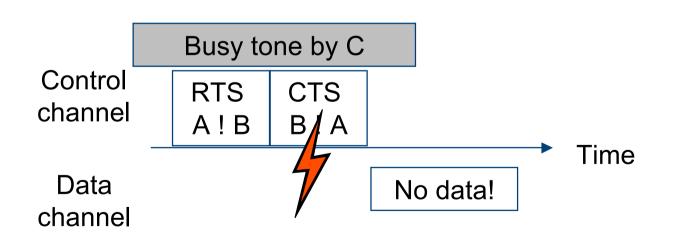

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

➤ Idea: combine busy tone with RTS/CTS

- Results in detailed overhearing avoidance, does not address idle listening
- Uses separate data and control channels

> Procedure

- Node A transmits RTS on control channel, does not sense channel
- Node B receives RTS, sends CTS on control channel if it can receive and does not know about ongoing transmissions
- B sends busy tone as it starts to receive data



PAMAS – Already ongoing transmission

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

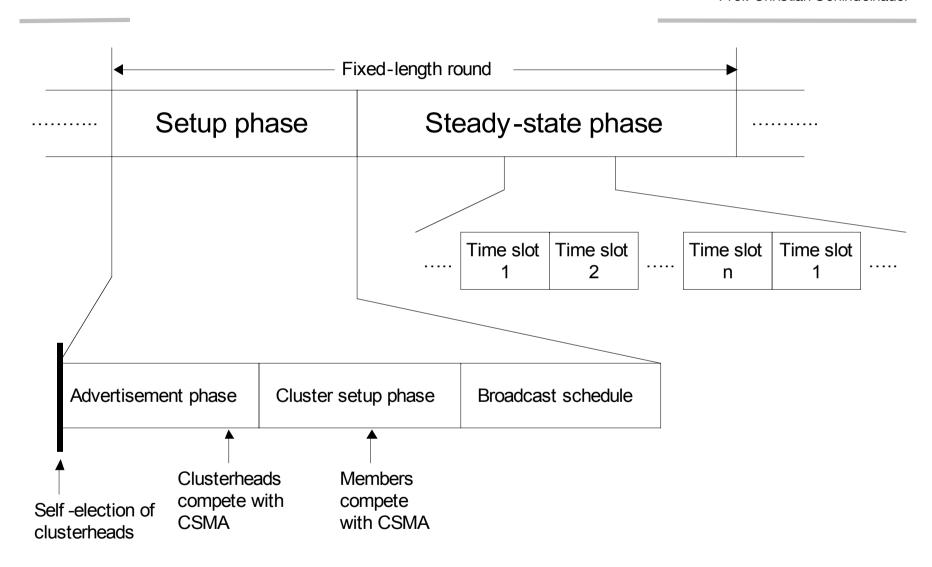
Suppose a node C in vicinity of A is already receiving a packet when A initiates RTS

- > Procedure
 - A sends RTS to B
 - C is sending busy tone (as it receives data)
 - CTS and busy tone collide, A receives no CTS, does not send data

Similarly: Ongoing transmission near B destroys RTS by busy tone

Overview

- > Principal options and difficulties
- > Contention-based protocols
- ➤ Schedule-based protocols
 - LEACH
 - SMACS
 - TRAMA
- **≻IEEE 802.15.4**



Low-Energy Adaptive Clustering Hierarchy (LEACH)

- > Given: dense network of nodes, reporting to a central sink, each node can reach sink directly
- > Idea: Group nodes into "clusters", controlled by clusterhead
 - Setup phase; details: later
 - About 5% of nodes become clusterhead (depends on scenario)
 - Role of clusterhead is rotated to share the burden
 - Clusterheads advertise themselves, ordinary nodes join CH with strongest signal
 - Clusterheads organize
 - CDMA code for all member transmissions.
 - TDMA schedule to be used within a cluster
- > In steady state operation
 - CHs collect & aggregate data from all cluster members
 - Report aggregated data to sink using CDMA

LEACH rounds

SMACS

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Given:

- Many radio channels
- Superframes of known length (not necessarily in phase, but still time synchronization required!)
- ➤ Goal: set up directional links between neighboring nodes
 - Link: radio channel + time slot at both sender and receiver
 - Free of collisions at receiver
 - Channel picked randomly, slot is searched greedily until a collision-free slot is found
- > Receivers sleep and only wake up in their assigned time slots, once per superframe
- > In effect: a local construction of a schedule

TRAMA

- ➤ Nodes are time synchronized
- > Time divided into cycles, divided into
 - Random access periods
 - Scheduled access periods
- ➤ Nodes exchange neighborhood information
 - Learning about their two-hop neighborhood
 - Using *neighborhood exchange protocol*: In random access period, send small, incremental neighborhood update information in randomly selected time slots
- ➤ Nodes exchange schedules
 - Using schedule exchange protocol
 - A node send update list of receivers for packets its has in Q
 - Based on this information it run distributed schedule algorithm
 - For each time slot ... the transmitting and receiving nodes and nodes can go to sleep.

TRAMA – adaptive election

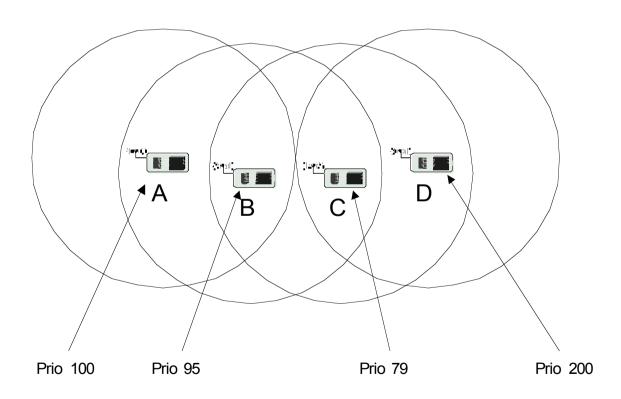
University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- ➤ Given: Each node knows its two-hop neighborhood and their current schedules
- > How to decide which slot (in scheduled access period) a node can use?
 - Use node identifier x and globally known hash function h
 - For time slot t, compute **priority** p = h (x © t)
 - Compute this priority for next k time slots for node itself and all two-hop neighbors
 - Node uses those time slots for which it has the highest priority

Priorities of node A and its two neighbors B & C

	t = 0	t = 1	t = 2	t=3	t = 4	t = 5
Α	14	23	9	56	3	26
В	33	64	8	12	44	6
С	53	18	6	33	57	2

TRAMA – possible conflicts


University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

When does a node have to receive?

- Easy case: one-hop neighbor has won a time slot and announced a packet for it
- But complications exist compare example

> What does B believe?

- A thinks it can send
- B knows that D has higher priority in its 2hop neighborhood!
- ➤ Rules for resolving such conflicts are part of TRAMA

Comparison: TRAMA, S-MAC

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

≻ Comparison between TRAMA & S-MAC

- Energy savings in TRAMA depend on load situation
- Energy savings in S-MAC depend on duty cycle
- TRAMA (as typical for a TDMA scheme) has higher delay but higher maximum throughput than contention-based S-MAC

>TRAMA disadvantage:

- substantial memory/CPU requirements for schedule computation

Overview

- > Principal options and difficulties
- > Contention-based protocols
- > Schedule-based protocols
- ► IEEE 802.15.4

IEEE 802.15.4

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- ➤ IEEE standard for low-rate WPAN applications
- ➤ Goals: low-to-medium bit rates, moderate delays without too stringent guarantee requirements, low energy consumption
- **≻**Physical layer
 - 20 kbps over 1 channel @ 868-868.6 MHz
 - 40 kbps over 10 channels @ 905 928 MHz
 - 250 kbps over 16 channels @ 2.4 GHz

>MAC protocol

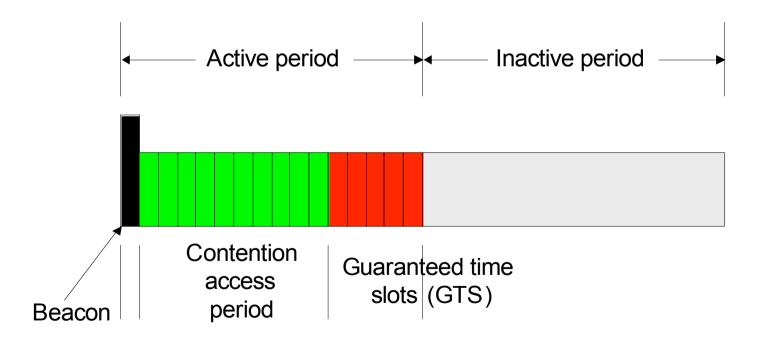
- Single channel at any one time
- Combines contention-based and schedule-based schemes
- Asymmetric: nodes can assume different roles

IEEE 802.15.4 MAC overview

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof. Christian Schindelhauer

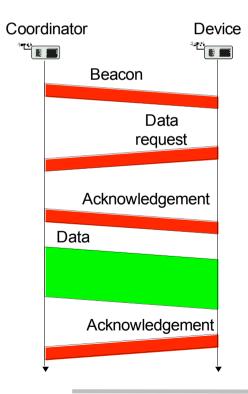
- >Star networks: devices are associated with coordinators
 - Forming a PAN, identified by a PAN identifier

≻ Coordinator


- Bookkeeping of devices,
- address assignment
- generate beacons
- Talks to devices and peer coordinators

> Beacon-mode superframe structure

GTS assigned to devices upon request


Superframe structure and GTS management

Data transfer procedures

- Case 1: Device has a GTS and wants to send data then ...
- ➤ Case 2: Device has a CTS and coordinator wants to send data then...
- > Case 3: Device does not has a GTS and want to send data then ...
- > Case 4: Coordinator cannot use (or do not have) CTS...
 - Device can be sleeping...

Wakeup radio MAC protocols

- Simplest scheme: Send a wakeup "burst", waking up all neighbors!
 Significant overhearing
 - Possible option: First send a short *filter packet* that includes the actual destination address to allow nodes to power off quickly
- Not quite so simple scheme: Send a wakeup burst including the receiver address
 - Wakeup radio needs to support this option
- Additionally: Send information about a (randomly chosen) data channel, CDMA code, ... in the wakeup burst
- Various variations on these schemes in the literature, various further problems
 - One problem: 2-hop neighborhood on wakeup channel might be different from 2-hop neighborhood on data channel
 - Not trivial to guarantee unique addresses on both channels

Thank you

(and thanks go also to Holger Karl for providing slides)

University of Freiburg
Computer Networks and Telematics
Prof. Christian Schindelhauer

Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

10th Lecture 28.11.2006