Wireless Sensor Networks
19th Lecture
16.01.2007

Christian Schindelhauer
schindel@informatik.uni-freiburg.de

University of Freiburg
Computer Networks and Telematics
Prof. Christian Schindelhauer
Options for topology control

Control node activity – deliberately turn on/off nodes

Control link activity – deliberately use/not use certain links

Flat network – all nodes have essentially same role

Hierarchical network – assign different roles to nodes; exploit that to control node/link activity

Power control

Backbones

Clustering
Geometric Spanners with Applications in Wireless Networks

1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
2. Spanners versus Weak Spanners
3. Spanners versus Power Spanners
4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if Exponent > Dimension
 - Weak Spanners are Power Spanners if Exponent = Dimension
 - Weak Spanners are not always Power Spanners if Exponent < Dimension
 - Fractal Dimensions
5. Applications in Wireless Networks
6. Conclusions
Geometric Spanner Graphs

A Graph $G = (V, E)$ with $V \subseteq \mathbb{R}$ where for all $u, v \in V$ there exists a path $P = (u = u_1, u_2, \ldots, u_\ell = v)$ with limited length:

$||P|| := \sum_{i=2}^{\ell} |u_i - u_{i-1}| \leq c \cdot |u - v|$

-in a limited radius:

$\max_{i=1,\ldots,\ell} |u - u_i| \leq c \cdot |u - v|$

limited energy costs:

$||P||^\delta := \sum_{i=2}^{\ell} |u_i - u_{i-1}|^\delta \leq c \cdot |u - v|^\delta$

- c-Spanner Graph
- weak c-Spanner Graph
- (c, δ)-Power-Spanner Graph
Geometric Spanners with Applications in Wireless Networks

1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
2. Spanners versus Weak Spanners
3. Spanners versus Power Spanners
4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if Exponent > Dimension
 - Weak Spanners are not always Power Spanners if Exponent < Dimension
 - Weak Spanners are Power Spanners if Exponent = Dimension
5. Applications in Wireless Networks
6. Conclusions
Spanners versus Weak Spanners

- **Fact**
 - Every c-Spanner is also a c-Weak Spanner

- **Theorem**
 - There are Weak Spanner which are no Spanners

- **Proof Idea [Eppstein]**: use fractal construction
1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
2. Spanners versus Weak Spanners
3. Spanners versus Power Spanners
4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if $\text{Exponent} > \text{Dimension}$
 - Weak Spanners are not always Power Spanners if $\text{Exponent} < \text{Dimension}$
 - Weak Spanners are Power Spanners if $\text{Exponent} = \text{Dimension}$
5. Applications in Wireless Networks
6. Conclusions
Spanners versus Power Spanners

- **Theorem**
 - For $\delta > 1$, every c-Spanner is also a (c^δ, δ)-Power Spanner

- **Proof:**
 - Consider a path P in the c-spanner with stretch factor c
 - This path is already a δ-Power Spanner graph with stretch factor c^δ:

\[
\|P\|^{\delta} = \sum_{i=1}^{\ell-1} \|P_i\|^{\delta} \leq \sum_{i=1}^{\ell-1} (c \cdot |u_i - u_{i+1}|)^{\delta}
\]

\[
= c^\delta \cdot \sum_{i=1}^{\ell-1} (|u_i - u_{i+1}|)^{\delta} = c^\delta \cdot \|P_{OPT}\|^{\delta}
\]
(Weak) Spanners versus Power Spanners

➢ Theorem
 – For $\delta > 1$ there is a graph family of (c, δ)-Power Spanners which are no weak C-Spanners for any constant C.

➢ Proof:
 – ...

Wireless Sensor Networks 16.01.2007 Lecture No. 19-9
1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
2. Spanners versus Weak Spanners
3. Spanners versus Power Spanners
4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if \(\text{Exponent} > \text{Dimension} \)
 - Weak Spanners are not always Power Spanners if \(\text{Exponent} < \text{Dimension} \)
 - Weak Spanners are Power Spanners if \(\text{Exponent} = \text{Dimension} \)
5. Applications in Wireless Networks
6. Conclusions
Weak Spanners are Power Spanners if Exponent > Dimension (I)

Lemma
- Let G be a weak c-spanner. Then, there is a path from nodes u to v in this graph G which as a subgraph of G is a weak 2c-spanner.

Proof sketch
- Wlog. let |u-v| = 1
- Start with a weak c-spanner path from u to v
- If two nodes x,y in this path are closer than 1/2
 - and the interior points of the sub-path (x,...,y) are outside the disk with center x and radius c/2
 - then construct the weak c-spanner path P’ from x to y
 - and substitute the sub-path (x,...,y) with this sub-path P’
- Repeat this process for nodes with distance 1/4, 1/8,...
- The new path is then within a circle of radius 2c with center u
Weak Spanners are Power Spanners if Exponent > Dimension (II)

Lemma

Let \(P = (u_1, \ldots, u_\ell) \) be a weak 2c-spanner, \(u_i \in \mathbb{R}^D \), \(|u_1 - u_\ell| = 1 \). Then \(P \) contains at most \((8c + 1)^D\) edges of length greater than \(c \); more generally, \(P \) contains at most \((8c + 1)^D(2^D)^k\) edges of length greater than \(c/2^k \).

Proof sketch

- Consider the D-dimensional spheres of radius \(c \)
- If the path is a weak spanner then for all pairs \(u, v \) of the path nodes the weak spanner property is valid, hence \(|u, v| > 1/2 \)
- How many nodes can be gathered in the sphere of radius 1/2?
- Consider spheres of radius 1/4. These spheres do not intersect.
- For an upper bound divide the volume of the radius \(c \)-sphere by the volumes of the small spheres

Analogous for shorter edges
Weak Spanners are Power Spanners if Exponent > Dimension (III)

Theorem

- For $\delta > D$ let $G = (V, E)$ be a weak c-spanner with $V \subset \mathbb{R}^D$. Then G is a (C, δ)-power spanner for

$$C' := (8c + 1)^D \cdot \frac{(2c)^\delta}{1 - 2^{D-\delta}}$$

Proof sketch:

- Choose edge lengths from $[2^i, 2^{i+1}]$
- Sum over the edge lengths up to length $c |u,v|$ and use:

more generally, P contains at most $(8c + 1)^D (2^D)^k$ edges of length greater than $c/2^k$.

- This leads to a converging sum for $\delta < D$
Weak Spanners are not Power Spanners if Exponent < Dimension

Theorem

To any $\delta < D$, there exists a family of geometric graphs $G = (V, E)$ with $V \subset \mathbb{R}^D$ which

- are weak c-spanners for a constant c
- but not (C, δ)-power spanners for any fixed C.

Wireless Sensor Networks

16.01.2007 Lecture No. 19-14
Weak Spanners are Power Spanners if Exponent = Dimension

Theorem
- Let \(G = (V , E) \) be a weak \(c \)-spanner with \(V \subset \mathbb{R}^D \). Then \(G \) is a \((C, D)\)-power spanner for \(C := O(c^{4D}) \).

Proof strategy:
1. For a two nodes \((u,v)\) with \(|u,v|=1\)
 - Consider a bounding square of side length \(4c\)
2. For \(k = 0,1,2,..\)
 - Consider edges of lengths \([c^{\beta^{-k-1}},c^{\beta^{-k}}]\) for some constant \(\beta > 1\)
3. In each iteration use “clean-up” to produce empty space
4. If long edges exist, then at least one empty square of volume \(\Omega(\beta^{-Dk})\) exist.

\[
\sum_{\text{edges in round } k} \left(\frac{\text{edge lengths in round } k}{\text{in round } k} \right)^D = O \left(\frac{\text{Volume of empty space added in round } k}{\text{volume added in round } k} \right)
\]
1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
2. Spanners versus Weak Spanners
3. Spanners versus Power Spanners
4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if $\text{Exponent} > \text{Dimension}$
 - Weak Spanners are not always Power Spanners if $\text{Exponent} < \text{Dimension}$
 - Weak Spanners are Power Spanners if $\text{Exponent} = \text{Dimension}$
5. Applications in Wireless Networks
6. Conclusions
Conclusions

- Complete characterization of the relationships of Spanners, Weak Spanners and Power Spanners

<table>
<thead>
<tr>
<th></th>
<th>(c)</th>
<th>(c)</th>
<th>((c^\delta, \delta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)-spanner</td>
<td>(unbounded)</td>
<td>(c)</td>
<td>((O(c^{2D+\epsilon}/(1 - 2^{-\epsilon})), D + \epsilon))</td>
</tr>
<tr>
<td>weak (c)-spanner</td>
<td>(unbounded)</td>
<td>(c)</td>
<td>((O(c^{4D}), D))</td>
</tr>
<tr>
<td>((c, \delta))-power spanner</td>
<td>(unbounded)</td>
<td>(unbounded)</td>
<td>for (\Delta > \delta): ((c^{\Delta/\delta}, \Delta))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for (\Delta < \delta): (unbounded, (\Delta))</td>
</tr>
</tbody>
</table>

is a

- spanner
- weak spanner
- power spanner
Delaunay Graph

➤ Definition
- Triangularization of a point set p such that no point is inside the circumcircle of any triangle

➤ Facts
- Dual graph of the Voronoi-diagram
- In 2-D
 • edge flipping leads to the Delaunay-graph
 ▪ Flip edge if circumcircle condition is not fulfilled
 • planar graphs
 • 5.08-spanner graph
- Problem: Might produce very long links
Yao-Graph

- Choose nearest neighbor in each sector
- \textit{c-spanner},
 - with stretch factor \[1/(1 - 2\sin(\theta/2))\]
 - Simple distributed construction
 - High (in-) degree

\[YG_6\]
Thank you