Final Meeting
(before the exams)

- Meeting Point: Waldkirch, main station
- Date: Tuesday 27.02.2006 14:01
 (Train departs Freiburg main station at 13:40)

- Plan
 - Hike the Kastelburg
 - Picknick

- BYOF
 - Order drinks on-line

- Don’t forget
 - Food
 - Umbrella
 - Matches
Data-centric and content-based networking

- Interaction patterns and programming model
- Data-centric routing
- Data aggregation
- Data storage
Data-centric storage

- Problem: Sometimes, data has to be stored for later retrieval – difficult in absence of gateway nodes/servers

- Question: Where/on which node to put a certain datum?
 - Avoid a complex directory service

- Idea: Let name of data describe which node is in charge
 - Data name is hashed to a geographic position
 - Node closest to this position is in charge of holding data
 - Akin to peer-to-peer networking/distributed hash tables
 - Hence name of one approach: **Geographic Hash Tables (GHT)**
 - Use geographic routing to store/retrieve data at this “location” (in fact, the node)
Geographic hash tables – Some details

- Good hash function design
- Nodes not available at the hashed location – use “nearest” node as determined by a geographic routing protocol
 - E.g., the node where an initial packet started circulating the “hole”
 - Other nodes around hole are informed about node taking charge
- Handling failing and new nodes
 - Failure detected by timeout, apply similar procedure as for initially storing data
- Limited storage per node
 - Distribute data to other nodes on same face
Conclusion

- Using data names or predicates over data to describe the destination of packets/data opens new options for networking.

- Networking based on such “data-centric addresses” nicely supports an intuitive programming model – publish/subscribe.

- Aggregation a key enabler for efficient networking.

- Other options – data storage, broadcasting aggregates – also well supportable.
Naming and Indexing

➢ Non-standard options for denoting the senders/receivers of messages
 - Traditional (fixed, wireless, ad hoc): Denote individual nodes by their identity
 - WSN: Content-based addresses can be a good complement

➢ When addresses are not given a priori, they have to be determined “in the field”
 - Some algorithms are discussed
Names vs. addresses

- **Name**: Denote/refer to “things”
 - Nodes, networks, data, transactions, ...
 - Often, but not always, unique (globally, network-wide, locally)
 - Ad hoc: nodes – WSN: Data!

- **Addresses**: Information needed to find these things
 - Street address, IP address, MAC address
 - Often, but not always, unique (globally, network-wide, locally)
 - Addresses often hierarchical, because of their intended use in, e.g., routing protocols

- **Services to map between names and addresses**
 - E.g., DNS

- **Sometimes, same data serves as name and address**
 - IP addresses are prominent examples
Issues in address management

- **Address allocation**: Assign an entity an address from a given pool of possible addresses
 - Distributed address assignment (centralized like DHCP [Dynamic Host Configuration Protocol] does not scale)

- **Address deallocation**: Once address no longer used, put it back into the address pool
 - Because of limited pool size
 - Graceful or abrupt, depending on node actions

- **Address representation**

- **Conflict detection & resolution** (*Duplicate Address Detection*)
 - What to do when the same address is assigned multiple times?
 - Can happen e.g. when two networks merge

- **Binding**
 - Map between addresses used by different protocol layers
 - E.g., IP addresses are bound to MAC address by ARP (Address Resolution Protocol)
Distributed address assignment

- **Option 1**: Let every node randomly pick an address
 - For given size of address space
 - Risk of duplicate addresses

- **Option 2**: Avoid addresses used in local neighborhood

- **Option 3**: Repair any observed conflicts
 - Temporarily pick a random address from a dedicated pool and a proposed fixed address
 - Send an *address request* to the proposed address, using temporary address
 - If *address reply* arrives, proposed address already exists
 - Collisions in temporary address unlikely, as only used briefly

- **Option 4**: Similar to 3, but use a neighbor that already has a fixed address to perform requests
Content-based addresses

- Recall: Paradigm change from id-centric to data-centric networking in WSN
- Supported by content-based names/addresses
 - Do not described involved nodes (not known anyway), but the content itself the interaction is about
- Classical option: Put a naming scheme on top of IP addresses
 - Done by some middleware systems
Geographic addressing

- Express addresses by denoting physical position of nodes
 - Can be regarded as a special case of content-based addresses
 - Attributes for x and y coordinates (and maybe z)

- Options
 - Single point
 - Circle or sphere centered around given point
 - Rectangle by two corner points
 - Polygon/polytope by list of points
 - …
ISO/OSI 7-layer reference model (complete network)

- Layer 7: Application
 - Application protocol
 - Application
 - APDU

- Layer 6: Presentation
 - Presentation protocol
 - Presentation
 - PPDU

- Layer 5: Session
 - Session protocol
 - Session
 - SPDU

- Layer 4: Transport
 - Transport protocol
 - Transport
 - TPDU
 - Communication subnet boundary
 - Internal subnet protocol

- Layer 3: Network
 - Network
 - Network
 - Packet
 - Data link
 - Data link
 - Frame
 - Physical
 - Physical
 - Bit

- Host A
 - Network layer host-router protocol
 - Data link layer host-router protocol
 - Physical layer host-router protocol

- Host B

Name of unit exchanged
Protocols for dependable data transport

- Dependability requirements
- Delivering single packets
- Delivering blocks of packets
- Delivering streams of packets
Dependability aspects

- **Coverage & deployment**
 - Is there a sufficient number of nodes such that an event can be detected at all? Such that data can accurately measured?
 - How do they have to be deployed?

- **Information accuracy**
 - Which of the measured data have to be transported where such that a desired accuracy is achieved?
 - How to deal with inaccurate measurements in the first place?

- **Dependable data transport**
 - Once it is clear which data should arrive where, how to make sure that it actually arrives?
 - How to deal with transmission errors and omission errors/congestion?
“Dependable” is an umbrella term

Main numerical metrics

- **Steady state availability** – probability that a system is operational at any given point in time
 - Assumption: System can fail and will repair itself
- **Reliability at time t** – Probability that system works correctly during the entire interval \([0,t)\)
 - Assumption: It worked correctly at system start \(t=0\)
- **Responsiveness** – Probability of meeting a deadline
 - Even in presence of some – to be defined – faults
- **Packet success probability** – Probability that a packet (correctly) reaches its destination
 - Related: packet error rate, packet loss rate
- **Bit error rate** – Probability of an incorrect bit
 - Channel model determines precise error patterns
Wireless sensor networks (WSN) have unique constraints for dependable data delivery
- Transmission errors over a wireless channel
- Limited computational resources in a WSN node
- Limited memory
- Limited time (deadlines)
- Limited dependability of individual nodes

Standard mechanisms: Redundancy
- Redundancy in nodes, transmission
- Forward and backward error recovery
- Combinations are necessary!
Dependable data transport – context

- **Items to be delivered**
 - Single packet
 - Block of packets
 - Stream of packets

- **Level of guarantee**
 - Guaranteed delivery
 - Stochastic delivery

- **Involved entities**
 - Sensor(s) to sink
 - Sink to sensors
 - Sensors to sensors

50% delivered
Constraints

- **Energy**
 - Send as few packets as possible
 - Send with low power → high error rates
 - Avoid retransmissions
 - Short packets → weak FEC
 - Balance energy consumption in network

- **Processing power**
 - Only simple FEC schemes
 - No complicated algorithms (coding)

- **Memory**
 - Store as little data as briefly as possible
Overview

- Dependability requirements
 - Delivering single packets
 - Single path
 - Multiple paths
 - Gossiping-based approaches
 - Multiple receivers
 - Delivering blocks of packets
 - Delivering streams of packets
Delivering single packets – main options

➢ What are the intended receivers?
 - A *single receiver*?
 - *Multiple receivers*?
 • In close vicinity? Spread out?
 - Mobile?

➢ Which routing structures are available?
 - Unicast routing along a *single path*?
 - Routing with *multiple paths* between source/destination pairs?
 - No routing structure at all – rely on *flooding/gossiping*?
Single packet to single receiver over single path

- Single, multi-hop path is given by some routing protocol

- Issues: Which node
 - Detects losses (using which indicators)?
 - Requests retransmissions?
 - Carries out retransmissions?
Detecting & signaling losses in single packet delivery

- Detecting loss of a single packet:
 Only positive acknowledgements (ACK) feasible
 - Negative acks (NACK) not an option – receiver usually does not know a packet should have arrived, has no incentive to send a NACK

- Which node sends ACKs (avoiding retransmissions)?
 - At each intermediate node, at MAC/link level
 • Usually accompanied by link layer retransmissions
 • Usually, only a bounded number of attempts
 - At the destination node
 • Transport layer retransmissions
 • Problem: Timer selection
Carrying out retransmissions

- For link layer acknowledgements: Neighboring node

- For transport layer acknowledgements:
 - Source node → end-to-end retransmissions
Example schemes: HHR and HHRA

- **Hop-by-hop reliability (HHR)**
 - Idea: Locally improve probability of packet transmission, but do not use packet retransmission
 - Instead, simply repeat packet a few times – a repetition code
 - Choose number of repetitions per node such that resulting end-to-end delivery probability matches requirements

- **Hop-by-hop reliability with Acknowledgements (HHRA)**
 - Node sends a number of packets, but pauses after each packet to wait for acknowledgement
 - If received, abort further packet transmissions
Multiple paths

- Types of: disjoint or braided
- Usage: default and alternative routes
- Usage: simultaneous
 - Send same packet
 - Send redundant fragments
- Example: ReInForM
Multiple paths: Disjoint or braided

Disjoint paths

Secondary path

Braided paths

Wireless Sensor Networks

13.02.2007 Lecture No. 26 - 27
Using multiple paths

- **Alternating use**
 - Send packet over the currently “selected” path
 - If path breaks, select alternative path
 - Or/and: repair original path locally

- **Simultaneous use**
 - Send the complete packet over some or all of the multiple paths simultaneously
 - Send packet fragments over several paths
 - But endow fragments with redundancy
 - Only some fragments suffice to reconstruct original packet
Conclusion

- Transport protocols have considerable impact on the service rendered by a wireless sensor networks
- Various facets – no “one size fits all” solution in sight
- Still a relatively unexplored areas

- Items not covered
 - Relation to coverage issues
 - TCP in WSN? Gateways?
 - Aggregation? In-network processing?
Thank you
and thanks to Holger Karl for the slides