
Cryptography based
on 2D and 3D Ray
Tracing
Sneha Mohanty

Introduction
● Completely novel symmetric key cryptographic approach involving 2D

cartesian coordinate system and boolean gates

● The 2D setup consists of Local bounding boxes (LBBs) placed at random

(x,y)-positions inside the 2D setup, which we call the Global bounding box
(GBB)

● LBBs are of two types, Reflection (black boxes) as well as Refraction (red

boxes)

● The curves inside the LBBs are first, second or third degree polynomials,

which are rotated and translated from the origin

● Apart from these, we also use boolean logic gates, such as; XOR, NOT-Shift

as well as Permutation in the cryptographic scheme, whose priority is decided

pseudo-randomly for each Local Bounding Box in the given 2D setup

Components of the Cryptographic system

● Plaintext includes starting x and y coordinates of the Global

bounding box (GBB) and the initial direction of light ray

● Ciphertext includes exit direction of light ray, its exit point

coordinates as well as the stack of projection boxes, or Non-

optical gate boxes.

● Key includes 3 elements: Global bounding box,

Cryptographic element as well as the Local bounding box

(LBB) parameters

Overview

Optical gate components : Light ray, reflection and refraction

Snell’s Law

Optical gates: 1st, 2nd and 3rd degree polynomials

Optical gates: Intersection calculation with curves

Optical gates: Intersection calculation with curves

Cardano’s equations

Non-Optical gates: NOT-Shift, XOR and Permutation

xor with 1110001.11100011100111001010

(96.56000900268554685, 21.229991912841796875)

= (1100000.10001111010111001100 , 10101.001110101110000011)

10

2

● Possible objects / curves:
1st, 2nd and 3rd degree polynomials in 2D
Polynomials rotated and translated from origin

● Boolean logic gates
XOR, NOT-shift, Permutation

We currently use 512 bits (in decimal) for encryption of the XOR
gate (both sides of the decimal point), permutations as well as
the NOT-shift gate. This can be customized to be
increased/decreased, and int part is currently set to

Encryption

Non-Optical gates: Validation of Projected point

● A projected point is considered invalid in the cases where :

- It is outside the Global bounding box

- It is potentially enclosed within another object (in current improvement, we
don’t generate enclosed 2nd and 1st degree objects in the reflection case)

- It is within the same Local bounding box from which it was projected

- It is within another projected point

Key

● Reverse steps of encryption to obtain the initial

point of entry into Global bounding box (x,y

coordinates and thereby, the message Plaintext

and the initial direction of light ray)

Decryption

● Changes to the key : add bouncing mechanism for the light ray,
angle restrictions at point of entry and enforce density ranges
(optimal global bounding box to local bounding box ratios)

● Ciphertext morphing - permutate the ciphertext stack, interweave
its components and perform other complicated operations to it
until we get an output of form (c1,c2) instead of returning the
original stack of non-optical gate boxes

● Optimize the components of the key by removing explicit
information about the rotation and translation operations, but by
making these implicit

● Using mpmath to ensure arbitrary precision and creating helper
crypto functions to add sufficient buffer to prevent any potential
precision loss during encryption-decryption

Further Improvements to Encryption-Decryption

Attacks on Cryptosystem

● The attacks on our cryptosystem are broken down into two parts :
- Attacks on the Optical gates
- Attacks on Non-optical gates

● If we start by the Overall attacks on the system, then we assume the Global
bounding box to be a black box, inside which all the objects as well the
subsequent projections of light rays are unknown

● If we start by the Box-by-Box attacks, then we assume that we know the positions
of the Local bounding box inside the 2D setup but we don’t know the polynomial
curves as well as the boolean gates that are applied for the light ray projections

Overall attack

● The overall attack consists of first, launching a grid based search, to locate each
curve that intersects a grid line (when it performs either reflection or refraction with
it) and thereafter enclosing it with a Local bounding box

● After the positions of the Local bounding boxes are approximated, the Box-by-box
attack is then launched on the ‘discovered’ Local bounding boxes, until all the
polynomial curves as well as their corresponding boolean-gate related data are
attempted to be found.

Overall attack - Grid search

● A sample output for the grid search to
locate the Local Bounding Boxes
encapsulating objects in a 2D setup is
shown here -

Overall attack - Grid search - sample 2

● A sample output for the grid search to
locate the Local Bounding Boxes
encapsulating objects in a different 2D
setup is shown here

● As can be observed, in the case of
this key, the Grid search followed by
the Clustering algorithm could not
compute the locations of the Local
bounding boxes correctly

Box-by-Box attack

● The box-by-box attack is implemented by
- data points gathering using Binary Search and then followed by the PLU

technique to discover the polynomial curve inside the Local bounding box
- followed by using multiple random samples to gather the bit-by-bit

transformation information and therefore the XOR constant, Permutations as
well as the NOT-shift positions and direction of bit shift for the specific Local
bounding box

● Given are the unique box id, ground truth (position of exit of the light ray at Local
bounding box), the numbers mapping to each Local bounding box for each of the
boolean gates, such as 1,2 or 3 as well as the projected point after the
transformation is performed

Box-by-Box attack - Binary Search
● To find data points on the polynomial curve, we

compare light rays along the trajectory of the original
light ray to find the position, where the output
(direction) first changes.

● This indicates than an interaction with the curve has
happened.

● We start the light rays according to a binary search
along the original light ray by halving the interval
that we search in each iteration.

● Each light ray gives us one data point on the curve.
We use many such light rays, hitting the curve from
many different directions to find more data points
and then use approximation methods such as the
PLU approximation method to determine the curve
using these data points.

Box-by-Box attack - Approximation
Linear Objects :

● For approximating linear objects, we use the property that at least two data points are needed in order to draw a line through it. However, since our linear
objects consist of multiple sides and we don’t know the corresponding side of each data point, we use at least three data points per side to confirm that they
belong to that particular side of the polygon/open-sided linear object.

● We start by gathering all data point pairs and their corresponding line equations. We narrow this search down to the line equations that cover more than two
data points. All the remaining data point pairs then get assigned to their corresponding line equations.

● To find the corners, we first find the most distant data point from each of the other line equations to achieve better precision when finding the corners. We
then calculate the intersection of all valid lines. By solving these, we retrieve a set of possible corner point coordinates which include the actual corners and
false or redundant corners. Since we only allow simple polygons (with the sides not crossing over each other), we can group these lines as adjacent and
opposite ones. The closer two opposing lines are to being parallel, the further away their intersection, in this case the more likely it will be a redundant corner.
Therefore in some cases redundant corners can be discarded by introducing a bound. However, this is not trivial since it is not clear how large the bound
could be, as parts of the polygon are allowed to be outside the Local bounding box.

● Also, sometimes there is an open side to the polygon, we will not be able to find data points on the open side, since there can not be data points on the
missing edge. Therefore we order the already found ’actual’ corners in a chain to determine where the open side is. Sometimes, if one or more of the sides of
the polygon does not get hit by sufficient number of light rays, because of its close proximity to another Local bounding box in the 2D setup, then we miss out
on computing these edges of the polygon altogether.

Non-Linear Objects :

● For a system of Non-linear equations, we first compute the Jacobian matrix, J of the system, use PLU decomposition of the Jacobian to solve the linearized
system and finally use the modified Newton method iteratively until convergence.

Box-by-Box attack - Sample Outputs

- Given 2D setup, attack on a sample box original vs approximated polynomial
curve

Improved resilience against standard attacks

● The additional measures such as the bouncing mechanism as well as the
ciphertext morphing add a much higher resilience to the key against standard
attacks, such as; known Plaintext attacks, Ciphertext attacks etc. Covered in more
detail in submitted Paper.

Conclusion and Future Work

● Novel symmetric-key cryptographic approach

● Extended also to 3D

● Could probably use the boolean gate operations on the dx, dy components
rather than the x, y components on the point of exit of Local bounding boxes,
thus bending the light ray rather than projecting it

References

1. Mohanty, S., Peairs, E., Schindelhauer, C.: Cryptography Based on 2D Ray Tracing
(EasyChair, 2024),https://easychair.org/publications/preprint/h8fS ,Preprint no.
15449

1. Reif, J.H., Tygar, J.D., Yoshida, A.: Computability and complexity of ray tracing. Discrete &
Computational Geometry 11, 265–288 (1994)

https://easychair.org/publications/preprint/h8fS

Cryptography based
on 2D and 3D Ray
Tracing
Sneha Mohanty

