Movement Control Algorithms for Realization of Fault-Tolerant Ad Hoc Robot Networks

Huawei Miao

Outline

- Mobile Robot System
- Related Work
 - Communication Faults
 - Fault Tolerance
- Movement Control Algorithms
 - Globalized Algorithms
 - Localized Algorithms
- Simulation
- Conclusion
- Future work
- References

Mobile Robot System (1)

- Mobile robot system
 - Two or more robots establish links between one another
 - Robots communicate directly or through any series of transmission links

Figure 1: An network involving 5 robot

- Robots move towards goal locations
 - Leave networks
 - Enter different networks
 - Form new network

Mobile Robot System (2)

• Process of robot network changing

a) Robot a, b and c are following their initial paths respectively. Robot a and b are in one network.

b) Robot a, b and c all are moving to their goal location a', b' and c' with the paths.In this process, c moves into the network.

Mobile Robot System (3)

c) Three robots compute their new paths. A new plan comes out.

d) As robots continue along their new paths, they leave communication range of each other and some network connections are broken.

Mobile Robot System (4)

- Characters
 - Exist in unpredictable environments
 - Exist in constantly changing environments
- Mobile robot systems are ideal
 - Self-forming
 - Self-healing
 - Self-organizing

Communication Faults

- Communication faults in robot networks can be caused by
 - Hardware damage
 - Energy consumption
 - Harsh environment conditions
 - Malicious attacks
- A fault in a robot can cause
 - Stopping transmission tasks to others
 - Stopping relaying data to sink
 - Data sent by a robot will be lost if the receiving robot fails

Basic Conception (1)

- Mobile robot network can be represented by graph
 - Vertex represents a network node
 - Edge denotes a communication link between a pair of robots
- Bridge
 - Edge whose removal disconnects the graph

Figure 3: An example of bridge

Basic Conception (2)

- Critical node
 - Graph is disconnected without this node
- Bi-connected graph
 - Remains connected after removing any of its vertices
 - Contain no critical node

Figure 4: Achieving bi-connectivity by node movement

Fault Tolerance Design

- The robot network is assumed to be
 - Connected
 - Not necessarily bi-connected
 - All nodes maintain canonical network state information
 - All nodes execute the same algorithm
- Fault tolerance
 - Should be at least two node-disjoint paths between each pair of robots
 - Can be achieved by making the communication network bi-connected
- Minimize the total (or average) distance moved by nodes in the network

Movement Control Algorithm

- The goal is to move robot nodes
 - From: an arbitrary initial connected configuration
 - To: bi-connected communication network
 - Use: moving a subset of robot nodes
 - Minimize the total distance travelled by all the robots
- Movement control algorithms
 - Globalized Algorithms
 - Localized Algorithms

Globalized Algorithms

- Globalized movement control
 - Each node shares the knowledge about the rest of the network
 - Each robot is aware of global network topology
 - Robots decide on their new position based on the topological information and then create a fault-tolerant network
- Globalized algorithms
 - One-Dimensional Case
 - Two-Dimensional Case
 - Contraction Algorithm
 - Block Movement Algorithm

One-Dimensional Case (1)

- The one-dimensional case is described as
 - N nodes lie in a straight line
 - Nodes are allowed to move only in two directions along the line

Figure 5: An example of 1D case with 4 nodes in a line

- Initial positions of the nodes are given by $p_i \in R$, $1 \le i \le N$
- Each node's transmission range is 1.0
- Final configuration given by positions $x_i \in R$, $1 \le i \le N$ is bi-connected
- Minimize the total distance moved by nodes

One-Dimensional Case (2)

• Formulate the problem as

Minimize
$$D_{total} = \sum_{i=1}^{N} |x_i - p_i|$$
 (1)
 $x_1 \ge p_1$ (2)
 $x_N \le p_N$ (2)
 $x_i - x_{i-1} \ge 0, 2 \le i \le N$ (3)
 $x_i - x_{i-2} \le 1, 3 \le i \le N$ (4)

One-Dimensional Case (3)

- Geometric meaning of the constrains above
 - (1) and (2): network will compress in length after bi-connectivity

Figure 6: Initial and final positions of 1D network

- (3): no node needs to move past its neighbors to achieve bi-connectivity

Figure 7: Movement path error

- (4): every alternate pair of nodes are within transmission range

Contraction Algorithm (1)

- Every robot node
 - Floods a link state update (LSU) to the rest of the network
 - Extracts the location information from all other nodes' LSUs
 - Calculates the geographic center C for the entire network

$$\vec{C} = \frac{1}{N} \sum_{i=1}^{N} \vec{p}_i$$

- Each node j independently moves toward \vec{C} by a weighted distance

$$(1-\alpha) \left\| \stackrel{\rightarrow}{C} - \stackrel{\rightarrow}{p_j} \right\|$$

- The total distance is given by $D_{total} = \sum_{i=1}^{N} \left\| \overrightarrow{x_i} - \overrightarrow{p_i} \right\|$

Contraction Algorithm (2)

• Basic idea of contraction algorithm

Figure 8: The rationale of contraction algorithm

Block Movement Algorithm (1)

- Bi-connected block tree (BT)
 - Bi-connected components of a graph are identified with critical nodes
 - Corresponding block tree's vertices are bi-connected components (or blocks) and critical nodes
 - Two critical nodes are connected by a bridge, the corresponding block

contains no nodes

Figure 9: a) Decomposition of a network into bi-connected components

b) The corresponding block tree

Block Movement Algorithm (2)

- Basic idea of block movement algorithm
 - Divide a network into bi-connected blocks
 - The network is a block tree of these blocks
 - Iteratively merging the blocks to form a single bi-connected block
- Which blocks to move
 - Conception
 - Root of BT
 - Leaf block
 - Parent block
 - Empty parent block
 - Parent critical node
 - Parent critical node of parent block

Figure 10: Conception of BT

Block Movement Algorithm (3)

- Which blocks to move (cont.)
 - Block movement strategy
 - Unreasonable movement

Figure 11: Block movement error

Block Movement Algorithm (4)

- Which blocks to move (cont.)
 - Block movement strategy (cont.)
 - Each leaf block moves toward its parent block
 - Each block moves toward the nearst node in the parent block
 - Parent block is empty, moves toward the parent critical node of parent block

Figure 12: Execution of the block movement algorithm a) Initial configuration b) After iteration c) Final (bi-connected) configuration

Block Movement Algorithm (5)

• Special case to the block movement

Figure 13: An exception to the block movement scheme and solution

- Leaf block oscillates between two nodes
- Translating the block toward the nearest parent node

Block Movement Algorithm (6)

- Characters of algorithm shown in the paper
 - Globalized robot movement control
 - Each mobile robot is assumed to be aware of global network topology
 - Require accurate and global information of entire network
 - Be applicable to only small size network
- For the large scale networks
 - Global network information is hard to obtain and maintain
 - Total distance of movements increase rapidly
 - Total communication overhead on robots increase rapidly

Localized Algorithms

- Localized movement control
 - Use p-hop neighbor information
 - Identify p-hop critical node
 - Control movement of nodes to let the network bi-connectivity
- Localized algorithms
 - Critical node without critical neighbor (Case I)
 - Critical node with one critical neighbor (Case II)
 - Critical node with several critical neighbors (Case III)

Critical Node without Critical Neighbor

- Basic idea
 - Distance between two neighbors is d, communication range is r
 - Select two neighbors from two disjoint sets
 - Move them towards each other until they become neighbors
 - Each node should move (d-r)/2 to reach each other
 - Select two neighbors with the minimum distance d among all possible pairs in the two sets

Figure 14: Node 3 is the only critical node and its 2-hop sub-graph

Critical Node with One Critical Neighbor

- Basic idea
 - Node ID : assign priorities to critical nodes
 - Critical node who has larger ID leads movement control
 - Larger ID node select one non-critical neighbor to move toward the other critical node (with smaller ID)
 - Selected neighbor is the nearest to the smaller ID node
 - Problem becomes critical node without critical neighbor (Case I)

Figure 15: Node 5 with larger node ID and its 2-hop sub-graph

Critical Node with Several Critical Neighbors (1)

- A critical node is
 - Available: it has non-critical neighbors
 - Non-available: otherwise
 - Critical head: available and ID larger than any available critical neighbor or has no available critical neignbors

Figure 16: Critical node with several critical neighbors

Critical Node with Several Critical Neighbors (2)

- Basic idea
 - Each critical head selects one of its critical neighbors to pair with
 - To be deterministic
 - Available critical neighbor (if any) with largest ID is selected
 - Otherwise non-available critical neighbor with the largest ID
 - Call case II of the movement control
 - Pair-wise merging continues until all critical nodes become non-critical
 - No action will be taken if there are no critical heads in the network

Figure 16: Critical node with several critical neighbors

Critical Node with Several Critical Neighbors (3)

• An illustrative example

Figure 17: An example of case III

Simulation for Globalized Algorithms (1)

- Performance evaluation of 1D network
 - Simulation environment
 - up to 200 collinear nodes
 - With transmission range 1.0
 - Starting positions randomly
 - Use total distance traveled metric (D_{total})

Figure 18: Total distance moved by nodes (1D networks)

Simulation for Globalized Algorithms (2)

- Performance evaluation of 2D network
 - Simulation environment
 - 1km*1km square area
 - Up to 50 robots randomly distributed
 - With transmission range 250m
 - Ground assumed to be flat without obstacles and trenches
 - Use total distance

traveled metric (D_{total})

Figure 19: Total distance moved by nodes (2D networks)

Simulation for Localized Algorithms (1)

- Performance evaluation of 2D network
 - Simulation environment
 - Area from 300m² to 3000m²
 - With communication range 10m
 - Network density of d=10 (an average of 10 neighbors per node)

Figure 20: Total distance moved and number of critical nodes for various of p and n, for d=10

Simulation for Localized Algorithms (2)

• Localized algorithm is not always successful for sparse networks

Figure 21: Percentage rate of success of localized algorithm on networks of various densities (fixed size=100)

Comparison

- Critical node identification by two algorithms
- Total distance moved by two algorithms (average case)

Figure 22: Critical nodes comparison

Figure 23: Total distance moved comparison

Conclusion (1)

- 1D network problem can be solved by globalized algorithm in polynomial time by applying LP techniques
- 2D network problem can be solved both by globalized and localized algorithms
- Using globalized algorithms, iterative block movement algorithm significantly outperforms the contraction heuristic in the total distance traveled metric

Conclusion (2)

- Localized movement control algorithm significantly outperforms its globalized counterpart
- In most cases, information about 3-hop neighbors only is sufficient to convert the network to a bi-connected one in an efficient manner
- Global information about the network is not necessary to achieve biconnectivity

Future work

- If there exists any localized algorithm that guarantees bi-connectivity starting from any connected network
- Constructing a connected and fault-tolerant network starting from a disconnected network
- Preserve area coverage and certain functionalities, while attempting to bi-connect

References

- Main paper
 P. Basu and J. Redi
 Movement control algorithms for realization of fault-tolerant ad hoc robot networks
 IEEE Network, 18(4):36-44, 2004
- Additional paper Shantanu Das · Hai Liu · Amiya Nayak · Ivan Stojmenovi' c A Localized Algorithm for Bi-Connectivity of Connected Mobile Robots Telecommunication Systems

Thanks :)

Questions??