## VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks

**Final Presentation** 

**Christopher Dorner** 

August 4th, 2008

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides Introduction

**Vehicle Assisted Data Delivery** 

The VADD Delay Model

The VADD protocols

**Performance evaluation** 

#### Introduction

What we want to do

Challenges

Preconditions and Assumptions

Example: Digital Map

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

## Introduction

## What we want to do

Overview

Introduction

What we want to do

Challenges

Preconditions and Assumptions

Example: Digital Map

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides In delay tolerant applications (DTN), we want

- To make a reservation in a restaurant
- To query parking information for a better road plan
- To query a department store when going shopping

Thus, we want

- To deliver a message from a moving source to a stationary site (e.g. infostation)
- Through the existing vehicular network
- As fast as possible (select forwarding path with smallest packet delivery delay)

## Challenges

Overview

Introduction

What we want to do

Challenges

Preconditions and Assumptions

Example: Digital Map

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

#### **VANETs** are

- Highly mobile
- Frequently disconnected
- Network density depends on traffic density
  - ☐ High in cities
  - □ Low in rural areas
  - ☐ Higher during the day than during the night

## **Preconditions and Assumptions**

#### Overview

#### Introduction

What we want to do

Challenges

Preconditions and Assumptions

Example: Digital Map

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

- A vehicle knows its own position
- Vehicles communicate through short range wireless channel (100m 250m)
- A vehicle knows its neighbors positions by beacon messages (one hop)
  - Beacon messages contain velocity
  - □ Beacon messages contain direction (not final destination!)
  - Beacon Messages contain location (GPS coordinates)
- Vehicles are equipped with digital maps (road information and traffic statistics)
- A Vehicle defines the packet header (TTL in seconds, source id, destination id, ...)

## **Example: Digital Map**

Overview

Introduction

What we want to do

Challenges

Preconditions and Assumptions

Example: Digital Map

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides



Real-time traffic statistics of New York City (07/26/08) Copyright Yahoo Maps

**Red road** speed approx. 0 mph **Yellow road** speed approx. 30 mph **Green road** speed approx. 55 mph

Introduction

#### Vehicle Assisted Data Delivery

State-of-the-art

Three Basic Principles

Geographical Greedy not good for sparse VANETs

The VADD modes

Intersection Mode

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

## **Vehicle Assisted Data Delivery**

## State-of-the-art

| $\overline{}$ |   |   |   |    |    |     |    |
|---------------|---|---|---|----|----|-----|----|
| ( )           | 1 | I | Δ | r١ | /1 | (A) | Λ/ |

#### Introduction

Vehicle Assisted Data Delivery

#### State-of-the-art

Three Basic Principles
Geographical Greedy not good for sparse
VANETs

The VADD modes

Intersection Mode

The VADD Delay Model

The VADD protocols

Performance evaluation

- Existing protocols like
  - □ AODV
  - □ DSDV
  - □ DSR
- rely on existing end-to-end connections
- Otherwise, packets will be dropped
- Not suitable for highly mobile ad hoc networks like VANETs
- Also not suitable for sparse networks

## **Three Basic Principles**

Overview

Introduction

Vehicle Assisted Data Delivery

State-of-the-art

Three Basic Principles

Geographical Greedy not good for sparse VANETs

The VADD modes

Intersection Mode

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

### Proposed VADD follows three principles

- 1. Use wireless transmission as much as possible
- Always choose the road with highest speed (lowest expected data delivery delay)
- 3. Continuous execution of dynamic path selection during packet forwarding process

And makes use of

- Idea of carry and forward
- known traffic pattern/road layout (limits vehicle mobility)

## **Geographical Greedy - not good for sparse VANETs**

Overview

Introduction

Vehicle Assisted Data Delivery

State-of-the-art

Three Basic Principles

Geographical Greedy not good for sparse VANETs

The VADD modes

Intersection Mode

The VADD Delay Model

The VADD protocols

Performance evaluation



- lacksquare Road from  $I_a$  to  $I_b$  is geographically shortest path
  - $\square$  But: no cars on the road  $\rightarrow$  no wireless transmission
- from  $I_a$  to  $I_b$  via  $I_c$  and  $I_d$  longer path
  - □ But: many cars on the road
  - ☐ Much faster wireless transmission possible

## The VADD modes

Overview

Introduction

Vehicle Assisted Data Delivery

State-of-the-art

Three Basic Principles

Geographical Greedy not good for sparse VANETs

The VADD modes

Intersection Mode

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides



Intersection Mode Select probabilistically best forwarding directionStraightWay Mode Greedy (geographical) forwarding strategy towards next target intersection

**Destination Mode** Broadcast packet to destination

## **Intersection Mode**

Overview

Introduction

Vehicle Assisted Data Delivery

State-of-the-art

Three Basic Principles

Geographical Greedy not good for sparse VANETs

The VADD modes

Intersection Mode

The VADD Delay Model

The VADD protocols

Performance evaluation

- Two Problems
  - □ Where to go?
    - The VADD Model (minimum data delivery delay)
  - ☐ Which carrier?
    - The VADD Protocols

Introduction

Vehicle Assisted Data Delivery

#### The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

## The VADD Delay Model

## packet forwarding delay between two Intersections

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides  $r_{ij}$  Road from Intersection  $I_i$  to  $I_j$ 

 $l_{ij}$  Euclidean distance of  $r_{ij}$ 

 $p_{ij}$  Vehicle density on  $r_{ij}$ 

 $v_{ij}$  Average vehicle velocity on  $r_{ij}$ 

 $d_{ij}$  Expected packet forwarding delay from  $I_i$  to  $I_j$ 

R Wireless transmission range

c Average one hop packet transmission delay

$$d_{ij} = (1 - \exp^{-R \cdot p_{ij}}) \cdot \frac{l_{ij} \cdot c}{R} + \exp^{-R \cdot p_{ij}} \cdot \frac{l_{ij}}{v_{ij}}$$

- Indicates, that inter-vehicle distances are smaller than R on a portion of  $1 \exp^{-R \cdot p_{ij}}$  of the road, where wireless transmission is used
- On the rest of the road: vehicles are used to carry the data
- Larger traffic density make less portion completed by vehicle movement

## First idea

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides First idea: represent VANET as a weighted and directed graph

**Nodes** Represent Intersections

**Edges** Represent the roads connecting the intersections

Weight of Edges The forwarding delay between Intersections

**Direction of Edges** Represent the traffic direction

Idea: Apply *Dijkstra's Algorithm* to find shortest path from source to destination

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides First idea: represent VANET as a weighted and directed graph

**Nodes** Represent Intersections

**Edges** Represent the roads connecting the intersections

Weight of Edges The forwarding delay between Intersections

**Direction of Edges** Represent the traffic direction

Idea: Apply *Dijkstra's Algorithm* to find shortest path from source to destination

#### Would not work, because

- No free selection of outgoing edge possible
- Only road with vehicles on it can be candidate for forwarding path
- → Use stochastic model instead to select next road

## Intersection mode: Which direction to go?

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides  $D_{ij}$  Expected packet delivery delay from  $I_i$  to the destination through road  $r_{ij}$ 

 $P_{ij}$  Probability, that packet is forwarded through road  $r_{ij}$  at  $I_i$  N(j) Set of neighboring intersections of  $I_j$ 

Now compute  $D_{ij}$  for each Intersection within boundary

$$D_{ij} = d_{mn} + \sum_{j \in N(n)} (P_{nj} \times D_{nj})$$

- Generates linear equation system of size  $n \times n$  (n: number of roads within boundary)
- lacktriangle Can be solved in  $\Theta(n^3)$  by applying *Gaussian Elimination Algorithm*
- Output: Priority list of outgoing directions for packet forwarding

## **Boundary?**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

#### Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

- Computation of delay involves unlimited unknown intersections
- Therefore, computation is impossible
- Solution: place a boundary including source and destination
  - ☐ Then, number of intersections is finite
  - Now the expected minimum forwarding delay can be found
- This paper: boundary is a circle
  - □ Center Point: destination
  - □ radius: 4000 meters, IF distance to destination < 3000 meters
  - $\square$  ELSE: radius = distance + 1000 meters



## **Linear Equation System**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides Rename the

- $\square$  Unknown  $D_{ij} \longrightarrow x_{ij}$
- $\square$  Subscript ij of  $d_{ij}$  and  $x_{ij} \longrightarrow$  unique number for each ij
- $\square$  Subscript of  $P_{ij}$  by its position in the the quations
- $\blacksquare$  *n* linear equations with *n* unknowns  $x_1, x_2, ..., x_n$

$$(P - E) \cdot X = -D$$

- One unique solution
- Solution is  $D_{ij}$  for current  $I_i$
- Sort  $D_{ij}$  for each neighboring Intersection  $I_i$

$$P = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix} X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} D = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix}$$

Introduction

Vehicle Assisted Data Delivery

#### The VADD Delay Model

packet forwarding delay between two Intersections

First idea

Intersection mode: Which direction to go?

Boundary?

Linear Equation System

Example

The VADD protocols

Performance evaluation



$$\begin{cases}
D_{ac} = d_{ac} \\
D_{ab} = d_{ab} + P_{ba} \cdot D_{ba} + P_{bc} \cdot D_{bc} \\
D_{ba} = d_{ba} + P_{ab} \cdot D_{ab} + P_{ac} \cdot D_{ac} \\
D_{bc} = d_{bc} \\
D_{cb} = 0 \\
D_{ca} = 0
\end{cases}$$

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

#### The VADD protocols

Intersection Forwarding

L-VADD: Location First

L-VADD: Loops

D-VADD: Direction

First

H-VADD: Hybrid

Performance evaluation

Summary, Conclusion, Additional Slides

## The VADD protocols

## Intersection Forwarding

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Intersection Forwarding

L-VADD: Location First

L-VADD: Loops

D-VADD: Direction

First

H-VADD: Hybrid

Performance evaluation

- Now priority list is available
- But: which carrier should we choose?
- Difficult: need to consider mobility and location
- Leads to different intersection protocols:
  - Location First VADD: L-VADD
  - Direction First VADD: D-VADD
  - ☐ Hybrid VADD: H-VADD

## **L-VADD: Location First**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Intersection Forwarding

L-VADD: Location First

L-VADD: Loops

D-VADD: Direction

First

H-VADD: Hybrid

Performance evaluation

- Simple solution:
  - ☐ Select closest carrier towards preferred direction
  - Moving direction of chosen carrier does not matter
  - $\square$  Example figure:  $A \longrightarrow B$
- Can reduce hops (minimize forwarding distance)
- Possibility of forwarding loops



## L-VADD: Loops

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Intersection Forwarding

L-VADD: Location First

L-VADD: Loops

D-VADD: Direction

First

H-VADD: Hybrid

Performance evaluation

- Loop-free solution:
  - ☐ Check previous hops
  - No forwarding to these hops
  - Could prevent good carriers from beeing selected
- Loops have negative impact on delivery ratio



## **D-VADD: Direction First**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Intersection Forwarding

L-VADD: Location First

L-VADD: Loops

D-VADD: Direction

First

H-VADD: Hybrid

Performance evaluation

Summary, Conclusion, Additional Slides Direction First

- Only consider carriers moving towards preferred direction
- Choose closest one towards this direction as next hop
- $\square$  Example figure:  $A \longrightarrow C$
- No Forwarding Loops (Want to see proof? - additional slide)
- But: delay may be higher



## H-VADD: Hybrid

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Intersection Forwarding

L-VADD: Location First

L-VADD: Loops

D-VADD: Direction

First

H-VADD: Hybrid

Performance evaluation

- Hybrid of L-VADD and D-VADD
  - ☐ Try L-VADD first
  - ☐ If it fails, e.g. Loop detected:
  - ☐ Switch to D-VADD
- Combines advantages of L-VADD and D-VADD



Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

#### Performance evaluation

Overview

**Delivery Ratio** 

Delay

Network Traffic

Summary, Conclusion, Additional Slides

## **Performance evaluation**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Overview

**Delivery Ratio** 

Delay

**Network Traffic** 

Summary, Conclusion, Additional Slides Metrics

Delivery ratio

□ Delay

□ Network traffic

Compared with

☐ GPSR (with buffers\*)

□ Epidemic Routing

\*buffers: extend GPSR to a simple carry-and-forward protocol

| Parameter                | Value                     |
|--------------------------|---------------------------|
| Simulation area          | $4000m \times 3200m$      |
| # of intersections       | 24                        |
| Intersection area radius | 200m                      |
| Number of vehicles       | 150, 210                  |
| # of packet senders      | 15                        |
| Communication range      | 200m                      |
| Vehicle velocity         | 15 - 80 miles per hour    |
| CBR rate                 | 0.1 - 1 packet per second |
| Data packet size         | 10 B - 4 KB               |
| Vehicle beacon interval  | 0.5 sec                   |
| Packet TTL               | 128 sec                   |

## **Delivery Ratio**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Overview

**Delivery Ratio** 

Delay

**Network Traffic** 







210 nodes

## **Delay**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Overview

**Delivery Ratio** 

Delay

**Network Traffic** 





150 nodes

210 nodes

## **Network Traffic**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Overview

**Delivery Ratio** 

Delay

**Network Traffic** 



Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

Summary

Future Work and Conclusion

Thank You

Proof by contradiction: D-VADD is loop-free

References

## **Summary**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

#### Summary

Future Work and Conclusion

Thank You

Proof by contradiction: D-VADD is loop-free

References

- VADD uses idea of carry-and-forward
- Make use of predictable vehicle mobility (known street-layout)
- Probabilistic Model and Linear Equiation System for computing priority list
- Simulation shows that the VADD protocols have better performance than existing solutions in DTN
- H-VADD has best performance among all VADD protocols

## **Future Work and Conclusion**

| Overview                  | Future Work                                                                    |  |  |  |
|---------------------------|--------------------------------------------------------------------------------|--|--|--|
| Introduction              | □ Llow to condition?                                                           |  |  |  |
| Vehicle Assisted Data     | ☐ How to send replies?                                                         |  |  |  |
| Delivery                  | <ul> <li>More efficient placement of boundary</li> </ul>                       |  |  |  |
| The VADD Delay Model      | □ Consider Privacy and Security aspects in VANETs                              |  |  |  |
| The VADD protocols        | Construcion                                                                    |  |  |  |
| Performance evaluation    | Conclusion                                                                     |  |  |  |
| Summary, Conclusion,      | □ Very good approach to solve problem of connection problems                   |  |  |  |
| Additional Slides Summary | <ul> <li>Very high delivery ratio (drop only of time limit reached)</li> </ul> |  |  |  |
| Future Work and           | ☐ Fast (low Delay in performance evaluations)                                  |  |  |  |
| Conclusion                | = rast (lett Bola) in portormanes standarisms)                                 |  |  |  |
| Thank You                 |                                                                                |  |  |  |

Proof by contradiction: D-VADD is loop-free

References

## **Thank You**

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

Summary

Future Work and Conclusion

Thank You

Proof by contradiction: D-VADD is loop-free

References

# Thank you for your attention Any Questions?

## Proof by contradiction: D-VADD is loop-free



## References

Overview

Introduction

Vehicle Assisted Data Delivery

The VADD Delay Model

The VADD protocols

Performance evaluation

Summary, Conclusion, Additional Slides

Summary

Future Work and Conclusion

Thank You

Proof by contradiction: D-VADD is loop-free

References

[1] J. Zhao and G. Cao, "VADD: Vehicle-assisted Data Delivery in Vehicular Ad Hoc Networks", IEEE INFOCOM, April 2006