Crankshaft: An Energy-Efficient MAC-Protocol for Dense Wireless Sensor Networks

Final Presentation by Jonathan Hontschik August 4th, 2008

References

 G. P. Halkes and K. G. Langendoen:
 Crankshaft: An Energy-Efficient MAC-Protocol for Dense Wireless Sensor Networks, EWSN 2007

Other sources are labeled.

Agenda

1. Introduction

2. Principles of Crankshaft

- 3. Simulations
- 4. Discussion

Introduction – MAC-Protocols

Protocols for Medium Access Control

Different approaches

- Time Division
- Carrier Sensing
- Collision Detection

Introduction – Wireless Sensor Networks

Applications

- Special characteristics
 - Many nodes / one or few sinks
 - Nodes have limited energy source
 - Need for energy efficiency

- Density

Introduction – Dense Networks

Density many neighbours


Problems intensify in dense networks:

- Overhearing
- Communication grouping
- Over-provisioning
- Neighbour state

Introduction – Problems

Overhearing

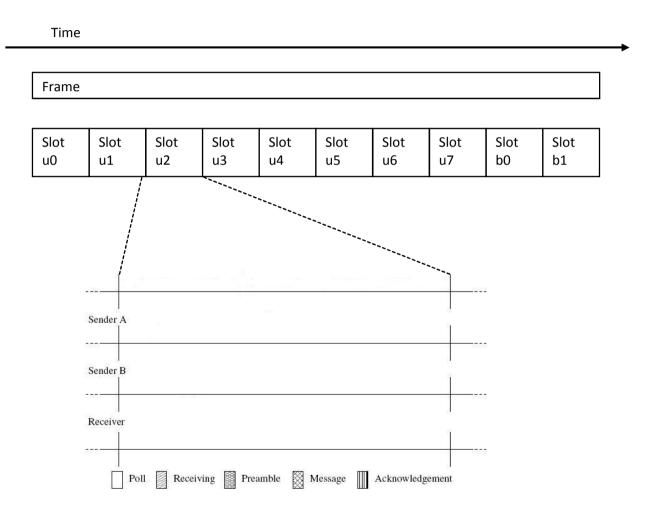
- Listening to messages you do not need to listen to waste of energy
- The same in everyday's life:

Communication grouping

- Some protocols split the time into an active and a non-active part (sleep).
- This saves energy but increases the probability of contention and collisions. more traffic more energy spent

Introduction – Problems

Over-provisioning


- When providing slots to send, many of these slots are wasted as the node may have nothing to send.
- Other nodes at least have to check if the node is willing to send energy spent for checking that .

Neighbour state

- Some protocols save the neighbour states.
- In a dense environment this costs a lot of energy (and memory) for maintaining this information.

Structure of Crankshaft

- Time
- Frame
- Slot
 - Unicast
 - Broadcast
- Further subdivision

Crankshaft "at work"

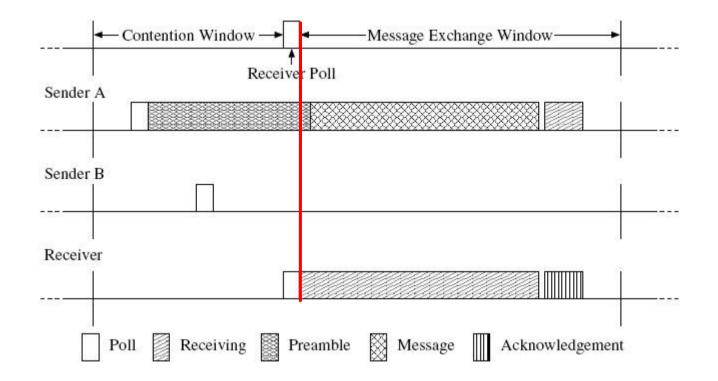


Figure 1: "Contention and message exchange in the Crankshaft protocol" taken from [1]

Crankshaft

Crankshaft: Additional notes

– Slot –	Time										
assignment	Frame]
(MAC address		i		i		i	i	i	i		1
modulo #u-slots	Slot u0	Slot u1	Slot u2	Slot u3	Slot u4	Slot u5	Slot u6	Slot u7	Slot b0	Slot b1	

- Sinks
- Collisions (probabilistic retry)
- Sender and receiver sharing the same slot

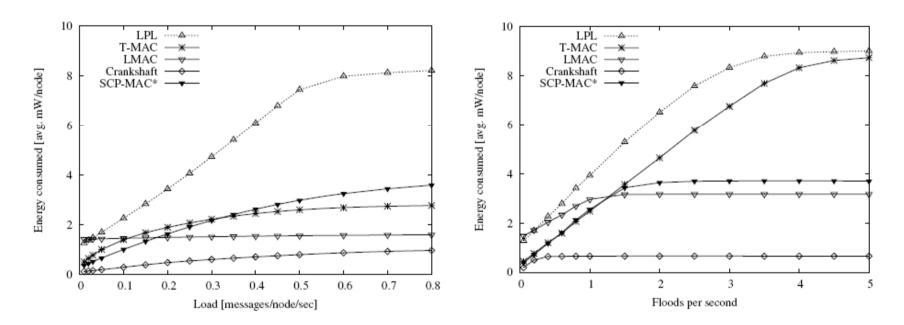
The Crankshaft Protocol

- Overhearing
 Time division
- Communication grouping
 Time division
- Over-provisioning
 Division (number of slots) is bounded
- Neighbour state

Neighbour state is computable no maintaining necessary

Simulation

- Potato-field experiment
 Parameters
- Connectivity is approximately 17,3 (high density)!


- - 10 slots (8 unicast, 2 broadcast)
 - All protocols' specific values

- Two important traffic patterns
 - Convergecast
 - **Broadcast** ____

Simulation: Energy

Convergecast

Broadcast flood

Lowest energy consumption in both scenarios.

Crankshaft

Simulation: Delivery ratio

Broadcast flood Convergecast LPL T-MAC LMAC Crankshaft SCP-MAC* 0.8 0.8 Delivery ratio Delivery ratio 0.6 0.6 0.4 0.4 LPL 0.2 T-MAC LMAC 0.2 Crankshaft -SCP-MAC* 0 0 2 3 5 4 0 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 Floods per second Load [messages/node/sec]

Delivery ratio good for convergecast, but poor for broadcast flood. Reasons?

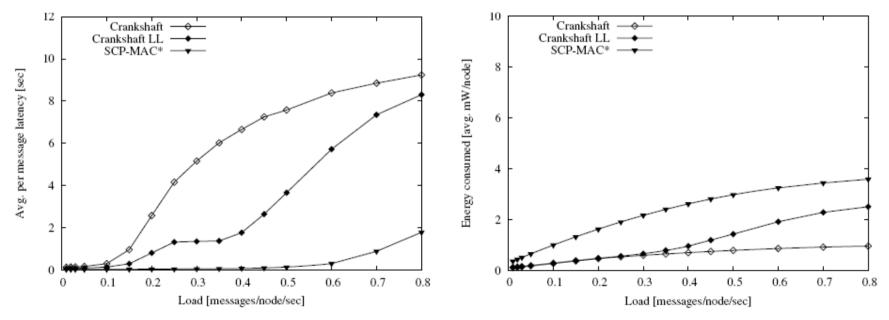
Crankshaft

Simulation shows trade-offs

- Poor delivery ratio in broadcast scenario
 - Many messages many collisions a lot of additional traffic more collisions
 - Solution in Crankshaft: retry with lower probability but: higher latency

Trade-offs

- Energy efficiency
- Delivery ratio
- Latency
- Broadcast vs. unicast


Simulation: Latency

Low Latency Option

 Sending data to another node instead of waiting for one frame

Trade-off: Energy consumption

 Energy consumption increases (opposition to Crankshaft's main goal!)

Crankshaft

Discussion: Crankshaft vs. IEEE 802.15.4

	IEEE 802.15.4	Crankshaft				
Goal	Similar goal: low cost communication					
Time division	Dynamic	Static				
Carrier sensing	Superframes	Contention window				
Frequences	Three	One (possibly more)				
Conditions	Two kinds of nodes : FFD and RFD(full/reduced function devices)					
	FFDs needed as coordinators					

Discussion of Crankshaft

Pro

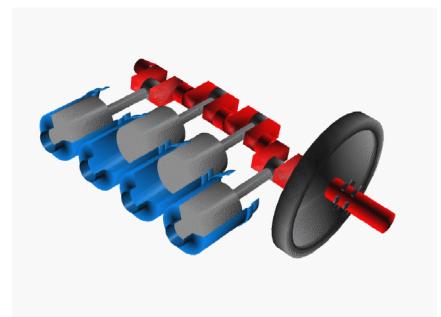
- Static slot assignment
- Main goal (energy efficiency) is achieved
- No differentiation of nodes (compared to IEEE 802.15.4)

Contra

- Static slot assignment
- Bandwidth
- Routing not considered in Simulation (broadcast used extensively)

Energy-efficient

"One-eyed"


Conclusion

- Crankshaft's main goal (reduction of energy consumption) is achieved for the price of less bandwidth and quickly increasing latency.
- Crankshaft is no universal, but a customized energy-efficient protocol for specific (dense) network environments.

Finally

Outlook of First
 Presentation:

Being able to explain the choice of Crankshaft as name for the protocol.

Animation taken from Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Image:Cshaft.gif