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dvances in electronics and mechanics have provid-
ed the basis technologies required for sophistica-
ted robots. It is well recognized that robots have
significant operational advantages over humans as

they can perform tasks without requirements for rest, food,
shelter, or task heterogeneity. Additionally, teams of robots
can often perform large-scale tasks more effectively than sin-
gle robots or augment humans in group operations such as
search-and-rescue or military operations. Whether the robot
team is performing distributed sensing and collection on Mars
or providing airborne relay capabilities in disaster or military
contexts, there will be a critical need for robots to initiate and
maintain communications to ensure timely and efficient task
completion. Indeed, the U.S. Joint Forces Command expects
“autonomous networked robotics” to be typical participants
on the battlefield by 2025 [1].

Traditionally, robotics researchers have proposed the use of
centralized robot networks where all members of a team of
robots communicate with a central controller (base station)
over a wireless medium [2]. However, in many application sce-
narios, it is difficult to guarantee the presence of a wireless
base station that can coordinate the flow of information
between any two robot units. Moreover, the movement of
robots can be severely restricted in order to keep in communi-
cation range of the base station, and this can hamper the task
the robot team plans to execute. Hence, we believe that self-

forming, self-healing, and self-organizing multihop communi-
cations networks are ideal for autonomous and semi-
autonomous multirobot systems.

Although numerous ad hoc network protocols, also called
packet radio, mobile ad hoc networks (MANETs), or self-
organizing networks, have been proposed and implemented,
all of them were designed to be completely transparent to
applications. The resulting extended applicability, however,
comes at the cost of severe restrictions in the exchange of
information between the application and the network, which
makes it virtually impossible for them to anticipate each
other’s behavior and thus cooperate. In robotic systems such
cooperation is highly desirable because robotic applications
generally entail movement, which directly affects the commu-
nication network; conversely, the propagation of radio trans-
missions used for communication may be able to provide an
additional means of sensing the environment. Such interaction
is a feasible proposition since robots are unique in their inte-
grated design in that the mission control, motion control, and
networking protocols are typically all implemented within the
same architecture.

In standard MANETs, the position and motion of a node
are determined by its owner and cannot be controlled by
other nodes; but in ad hoc networks consisting of robot nodes,
these properties are controllable from other nodes in the net-
work. In this article we focus on the specific problem of alter-
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ing the positions of robots in order to
achieve a desirable ad hoc network
topology starting from an arbitrary ini-
tial connected configuration.1 In par-
ticular, we focus on fault tolerance:
our goal is to move a subset of robot
nodes from their initial locations to a
new set of locations such that the new
connectivity graph is more tolerant to
node failures than the initial graph.
We utilize a baseline property for fault
tolerance from graph theory — bicon-
nectivity — and propose a few simple
algorithms that attempt to achieve this
network property in a distributed manner. We compare the
algorithms against each other with respect to a total distance
traveled metric (Dtotal) that should be minimized. We show by
simulations that the block movement algorithm completely
outperforms the baseline contraction algorithm with respect
to this metric.

The value of maintaining fault tolerance vs. other mission
goals can be balanced by some separate autonomous goal res-
olution algorithm within the robot. In some military contexts,
the roles of the robotics may be only to ensure communica-
tions for other (human) participants, while in search-and-res-
cue operations it may be simply be a desired state to maintain
in the context of the overall physical search progress.

The rest of the article is organized as follows. We present a
brief introduction to fault tolerance in network design and
some related work. We present a mathematical formulation of
the problem and describe movement control algorithms. Per-
formance evaluation results are presented. We conclude the
article with pointers to future research directions.

Fault Tolerance in Network Design
An ad hoc network can be represented by a graph in which
each vertex represents a network node, and each edge repre-
sents the fact that the endpoints are in communication range
of each other. A graph is bipartite if its vertices can be divided
into two sets so that all edges connect two vertices from dif-
ferent sets. A graph is biconnected if it remains connected
after removing any of its vertices. Each such vertex is referred
to as a cutvertex or an articulation point. An edge whose
removal disconnects the graph is referred to as a bridge.2

Clearly, biconnectivity is a desirable property for network fault
tolerance. In a battle-bot scenario, if the ad hoc network
formed by the robots is biconnected, even if any one robot
fails or is shot down by the enemy, the network still remains
connected. Hence, robots should always attempt to form a
biconnected network as long as it does not interfere with their
current mission. This necessitates movement for some of them
(assuming no power control in the radios) in order to create
extra links such that the resultant topology is biconnected.
Figure 1 illustrates the idea. The more general property of k-
connectivity is seemingly much harder to achieve, and we do
not investigate it in this article.

Information about locations of nodes in k-hop neighbor-

hoods of every node (k being constant) may not be adequate
for designing a deterministic algorithm that achieves bicon-
nectivity by node movement while keeping the Dtotal metric in
consideration.3 Hence, proactive link-state-based MANET
routing protocols such as Optimized Link State Routing
(OLSR) [3] and Hazy Sighted Link State (HSLS) [4] in which
each node shares the knowledge about the rest of the network
will be most easily applicable to our algorithms. For the pur-
pose of designing and evaluating the algorithms, we imply that
all nodes maintain canonical network state information and
execute the same biconnectivity algorithm. This can certainly
be modified to reduce the amount of redundancy without loss
of our algorithm performance through the election of a single
node dynamically designated to perform group decisions
based on the network state.

We admit the possibility of the existence of randomized
techniques that use limited neighborhood information to iter-
atively achieve biconnectivity with a certain probability, but we
did not investigate such techniques in this work. Instead, our
focus is on deterministic techniques that yield biconnectivity
while attempting to minimize the Dtotal metric.

Related Work
To the best of our knowledge this is the first approach to effi-
cient fault-tolerant network design using node movement as a
primitive. Ramanathan et al. have proposed optimal schemes
for topology control in ad hoc networks using variation of
transmission power as a primitive [5]. They monotonically
increase transmit power locally at every node, and attempt to
satisfy properties of connectivity and biconnectivity. Our prob-
lem is very different from theirs since the movement of a
node aimed at the removal of a cutvertex by creating a new
edge can instead result in the creation of a cutvertex at anoth-
er location in the network. Although our algorithms ensure
that new cutvertices are not created during node movement,
the Euclidean nature of the Dtotal metric introduces difficulties
in the characterization of the optimal solution.

Li and Rus mention the use of node motion in order to
relay messages between nodes in [6], but do not consider the
problem of fault-tolerant network design. Winfield has pro-
posed the use of MANETs for networking between robots [7],
but he too has not considered the problem of moving robots
to achieve desirable network configurations.

Movement Control Algorithms
In this section we present various algorithms for movement of
robot nodes with the objective of making the network bicon-

� Figure 1. Achieving biconnectivity by node movement.

2

1
3

4

2

1

3

4

5

6

5

6

Cutvertex

Node 1 moves

(Biconnected network)

1 Since we generally advocate close cooperation between the ad hoc net-
work subsystem in a robot and the subsystems controlling its mission and
motion, dissemination of node locations is achieved without much over-
head.

2 Thus, the bridges in a graph are precisely those edges that do not lie on
any cycle.

3 In the worst case, very little movement by a single node X may remove a
cutvertex that is O(n) hops away, and this step cannot be computed deter-
ministically by X by utilizing limited neighborhood information.
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nected.

The One-Dimensional Case
We briefly analyze the 1D version of the problem where N
nodes lie in a straight line and are allowed to move only in
two directions along the line. Suppose the initial positions of
the nodes are given by pi ∈ RR, 1 ≤ i ≤ N. We assume that
each node’s transmission range is 1.0. Our objective is to com-
pute a node movement schedule such that the final configura-
tion given by positions xi ∈ RR, 1 ≤ i ≤ N is biconnected. At
the same time we want to minimize the total (or average) dis-
tance moved by nodes in the network. We can formulate the
above problem as follows:

x1 ≥ p1; (1)

xN ≤ pN; (2)

xi – xi–1 ≥ 0, 2 ≤ i ≤ N; (3)

xi – xi–2 £ 1, 3 ≤ i ≤ N. (4)

Constraints 1 and 2 are nonbinding constraints that just
illustrate the fact that the 1D network will compress in length
after a biconnected configuration is reached. The N – 1 linear
ordering constraints in 3 restrict the search space as no node
needs to move past its neighbors to achieve biconnectivity.
Biconnectivity is ensured by the N – 2 constraints, which basi-
cally impose a condition on the nodes that every alternate pair
of nodes are within transmission range of each other. It is
easy to see that these constraints are necessary and sufficient
for ensuring biconnectivity. Although the objective function
has a nonlinear term (absolute value), the problem can be
easily transformed into a linear program (LP), which can then
be solved optimally in polynomial time (as a function of N).
We direct the reader to [8] for details.

The Two-Dimensional Case: A Contraction Algorithm
In a higher-dimensional setting, the optimal movement prob-
lem is harder than in the 1D case due to the extra degrees of
freedom for each node. The biconnectivity constraints cannot
be formulated locally for each node in Euclidean networks as
in line networks (constraint 4). Besides, the objective function
(Dtotal) is nonlinear. Hence, techniques proposed earlier can-
not be applied here.

Although a proof of NP-completeness of the optimal
“biconnectivity by movement” problem has eluded us so far,
all our attempts have indicated that the 2D case is much hard-
er to solve than its 1D counterpart. We therefore propose
practical heuristic solution approaches, and leave rigorous

analysis and the search for bounded factor
approximation algorithms for future investi-
gation.

One simple heuristic that can be imple-
mented easily in a distributed fashion is con-
traction. Every robot node includes its
location information (GPS coordinates or
indoor relative location information) when-
ever it floods a link state update (LSU) to
the rest of the network. When LSUs have
arrived at node X from all other nodes, X
extracts the location information from each
LSU and calculates the geographic center C
for the entire network using the following
formula:

where p→i is the position vector of node i. After calculating C
→

,
each node j independently moves toward C

→
by a weighted dis-

tance (1 – α) C
→

– p→j, where α is the contraction parameter.
The rationale here is that as nodes move inward, more edges
are added to the network and the cutvertices removed, and
after a certain stage the network becomes biconnected. As a
result of following the contraction algorithm, nodes near the
periphery of the network move greater distances than the
nodes located in the interior of the network.

The choice of parameter α is important here. Choosing a
small α results in unnecessarily dense networks (albeit with
high connectivity), whereas a large α results in little change in
network topology. In the latter case, the contraction algorithm
is applied iteratively until the network becomes biconnected.
Since each node i travels on the same straight line (even over
multiple iterations) joining its starting position p→i and C

→
, when

the network reaches a biconnected configuration with node
positions x→i, the total distance traveled is given by

The Two-Dimensional Case: A Block Movement
Algorithm
We now describe a more systematic mechanism for achieving
a biconnected topology that we believe will reduce Dtotal while
allowing efficient execution in low order polynomial time.

Since the removal of a cutvertex breaks a connected graph
G into two or more connected components, the basic ratio-
nale behind the algorithm presented in this section is to con-
sciously remove all the cutvertices from the network by
moving certain robot nodes appropriately to new locations.
Note that the contraction algorithm presented earlier does
not attempt to remove the cutvertices systematically.

In Fig. 2a the biconnected components of a graph are iden-
tified along with its cutvertices. In Fig. 2b a corresponding
graph whose vertices are biconnected components (or blocks)
and cutvertices of the original graph is depicted. Such a graph
is referred to as a block graph [9]. A block graph has the fol-
lowing properties:
P1 A block can have between 0 and N nodes4 (both inclu-

sive). If two cutvertices are connected by a bridge, the cor-
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� Figure 2. a) Decomposition of a network into biconnected components; b) the cor-
responding block tree.
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4 If the original graph has no cutvertices, it is already biconnecte,d and its
block graph consists of only one node that contains all N vertices.
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responding block contains no nodes. Block B3 in Fig. 2
illustrates this point.

P2 A block graph is a bipartite graph. The two classes of the
bipartite graph are cutvertices and blocks. No two cutver-
tices can be adjacent in the block graph, nor can two blocks.

P3 A block graph is a tree.5
P4 A block tree of a graph G can be computed in linear

(O(V + E)) time. This can be achieved during a depth
first traversal/search (DFS) of G in the same pass [10].
While executing DFS on an undirected graph, we start at

an arbitrarily chosen node that becomes the root. We keep
traversing fresh edges and mark nodes as visited; on the way
we keep pushing nodes into a stack data structure. This pro-
cess is continued until we reach a node that is only connected
to already visited nodes. At this point we keep backtracking
up to a vertex that has edges connecting them to nodes hither-
to not visited. With a little thought it can be seen that such a
node will always be a cutvertex of the graph. Alongside the
identification of the cutvertex, it is easy to pop the down-
stream nodes from the stack into a set that corresponds to a
biconnected component or block. Since the above steps can
be executed during DFS in the same pass, identification of
cutvertices and blocks takes only linear time.

A Heuristic Algorithm for Translation of Blocks — After a brief
introduction to the algorithm for the identification of blocks
and cutvertices in a graph G, we present an algorithm, MAKE-
BICONNECTED, for computing new positions for certain nodes;
it systematically collapses all blocks into a single one and thus
makes G biconnected.

As described earlier, every node receives LSUs from other
nodes in the network and extracts their position information
from these LSUs. Additionally, neighbor information of a
node is also extracted from an LSU in order to construct a
view of the current network topology. Although in a perfect
world knowing the locations and the transmission range of
each radio is enough to construct a view of the network topol-
ogy, in the real world one actually needs neighbor information
from every node to construct a view. Since LSU packets con-
tain that information anyway, no extra overhead is registered.
After constructing a full view of the topology, each node inde-
pendently computes the block tree BT of the topology graph
G. Note that every node should have the same view of the
topology; hence, internal representation of G should be con-
sistent so that DFS produces the same block tree at every

node. This can easily be achieved by canonical insertion of
nodes and edges ordered by node IDs into G at every node.

A salient property of a block is that it is a connected sub-
graph of G. Hence, if all nodes in a block are translated
together using the same translation vector, distances between
all pairs of nodes in that block remain intact, and hence there
is no change in connectivity inside that block. On the other
hand, if only some nodes in a block are translated, it may
result in a change of connectivity within the block. Because of
this fact we advocate collective translation of all nodes in a
block whenever needed so that the connectivity within the
block is preserved while progress is made toward increasing
the connectivity of the whole network by translating the block
itself. The suboptimality of our scheme stems from this fact as
it may not be necessary to move all nodes in a block to
achieve biconnectivity. However, this results in a faster algo-
rithm.

Which Blocks to Move and Where? — Suppose block Bk has
edges with two cutvertices cu and cv in BT. Let Bm and Bn be
two blocks connected to cu and cv, respectively. Now, since we
want to minimize the Dtotal metric, we should move nodes as
little as possible. If we translate all nodes in Bk toward Bm, cu
may cease to be a cutvertex, but nodes in Bn may become dis-
connected from G as the link between Bk and cv may be bro-
ken. Hence, we may not have made any progress toward
reducing the number of cutvertices in G after this translation
step. To prevent the above from happening, we only translate
blocks in BT that have degree 1 toward their respective parent
blocks. In order to heuristically minimize the total distance
moved, we appoint the block with the maximum number of
nodes as the root of BT, and identify all other blocks with
degree 1 as leaf nodes.

Algorithm 1 shows the steps to make a robot network
biconnected systematically. In every iteration of our algorithm
we attempt to remove a number of cutvertices from BT. In
the context of Fig. 1, block B5 will be the root block in BT; B1,
B2, and B4 will be leaf blocks. All nodes in B4 will translate
toward a suitable node in B5 since the latter is the parent
(block) of B4 (lines 6–8 in Algorithm 2). B1 and B2, on the
other hand, have an empty parent block B3; hence, all nodes
in the respective blocks will translate toward the parent
cutvertex of the parent block (i.e., c2, lines 9–11 in Algorithm
2).

Every block is translated toward the nearest node in the
parent block, whenever applicable, by enough distance such
that exactly one new edge appears between the current and
parent blocks; this causes the cutvertex between the two
blocks to vanish. Hence, in one iteration of the algorithm sev-
eral cutvertices are removed. The time complexity of finding
the nearest node as a target edge partner requires B2 compar-
isons if B is the average number of nodes in a block. Since B

5 This can be proved easily. Since the block graph is bipartite, it cannot
have an odd cycle. The presence of an even cycle would mean that some
two blocks are connected via two different cutvertices; in that case one of
the two cutvertices can be safely removed without disconnecting the graph.
Thus, we arrive at a contradiction, and a block graph is a tree.

� Algorithm 1. MAKEBICONNECTED(G).

1: Given: G
2: Gorig ← G; /* Save a copy of the original graph */
3: BT ← COMPUTE_BICONNECTED_COMPONENTS(G); /* Identify Blocks and Cutvertices in G */
4: while (NUMBER_OF_NODES(BT) > 1) do
5: MARKROOTBLOCK(BT); /* Select ROOT block with maximum number of nodes */
6: MARKOTHERBLOCKS(BT); /* Mark LEAF, INTERMEDIATE blocks and parents of each block */
7: MOVE_LEAF_BLOCKS(G, BT); /* Algorithm 2 for translating leaf blocks towards their parents */
8: BT ← nil; /* Reset the Block Tree variable */
9: G ← RECALCULATE_EDGES(G); /* Calculate new connectivity after translation */
10: BT ← COMPUTE_BICONNECTED_COMPONENTS(G); /* Recalculate Blocks and Cutvertices */
11: end while
12: G is biconnected now;
13: Dtotal ← CALCULATE_DISTANCE_MOVED(Gorig,G);
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= O(V) in the worst case, the Find_Nearest_Node function
has a worst case time complexity of O(V2).

For large networks, several iterations may be needed to
remove layers of cutvertices before only one block remains.
Also, after every iteration, as the number of blocks increases,
the blocks grow in size. Hence, a small translation by a large
block may contribute a significant amount to Dtotal. Thus, we
always recalculate the root (the one containing maximum
number of nodes), leaf, and intermediate blocks after every
iteration in order to minimize the total movement.

In the worst case, we can have O(V) iterations of the
while loop in Algorithm 1 before achieving a biconnected con-
figuration (e.g., in a line graph). However, since the number
of iterations is bounded, convergence is guaranteed in almost
all situations except in very special cases as depicted in Fig. 3.
We solve this special case by translating the block toward the
nearest node that is a direct parent of the cutvertex (as
depicted in the rightmost subfigure in Fig. 3). Although doing
this repeatedly also guarantees convergence, we follow this
tactic only when translation toward a nearest node in the par-
ent block does not remove a cutvertex. This is because the
aforementioned scheme, if applied iteratively, is likely to take
many more iterations before achieving biconnectivity for the
whole network.

Schemes for the Actual Movement of Robots — Note that there
can be two different schemes for the actual movement of the
robots:

• The robots start moving as soon as a single iteration is over.
• No robot node actually starts moving until their final posi-

tions have been determined, that is, after convergence of
Algorithm MAKEBICONNECTED(G).
Since the convergence occurs rapidly even for large net-

works, we adopt the latter scheme which is better since it may
result in a much lower value of Dtotal due to the vector addi-
tion of translation vectors for every node over all iterations of
the algorithm.

Figure 4 depicts a complete execution of the MAKE_BICON-
NECTED algorithm on a randomly selected initial topology.
The dark points represent cutvertices in the network. We can
observe several steps of the algorithm in action as the graph
becomes biconnected after only three iterations.

More Intel l igent Block Movement Schemes — Algorithm
MAKE_BICONNECTED attempts to translate leaf blocks only
towards their parent blocks or cutvertices in order to remove
cutvertices. However, it is easy to conceive of intelligent
schemes in which a slight movement toward a nonparent
block may cause removal of several cutvertices in a single iter-
ation. Such schemes can reduce Dtotal as well as the number of
iterations in suitable scenarios.

Another possible improvement to the MOVE_LEAF_BLOCKS
algorithm not investigated in this article is the following. It
may not be necessary to translate all nodes in a leaf block
toward its parent block. For small leaf blocks it may be simple
to calculate optimal translation patterns to achieve biconnec-

� Algorithm 2. MOVE_LEAF_BLOCKS(G, BT).

1: Given: G, BT
2: for all nodes blk ∈ BT do
3: if (blk is a BLOCK node and a LEAF) then
4: parcv ← BT.parent [blk]; /* Parent cutvertex of block blk */
5: parblk ← BT.parent [parcv]; /* Parent BLOCK of block blk */
6: if (NUMBER_OF_NODES(BT[parblk]) > 0) then
7: /* Find a node in parblk that has the shortest distance from any node in blk */
8: nearest ← FIND_NEAREST_NODE(G, blk, parblk);
9: TRANSLATE_BLOCK(BT, blk, nearest); /* Translate all nodes in blk towards nearest node */
10: else
11: pcv ← BT.parent [parblk]; /* If parblk is empty, then select parent cutvertex of parblk */;
12: Translate_Block(BT, blk, pcv); /* Translate all nodes in blk towards node pcv */
13: end if
14: end if
15: end for

� Figure 3. An exception to the block movement scheme and solution.
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tivity with the parent block, although it may be harder to do
so when the leaf blocks grow in size. Both schemes outlined
above are likely to be computationally intensive and are sub-
jects for future investigation.

Performance Evaluation
Analytical Results for 1D Networks
In this section we present results for the 1D version of the
problem. We consider up to 200 collinear nodes, each with
transmission range of 1.0 and starting positions randomly cho-

sen from [0,100] ⊂ RR. We formulate and solve an LP as
described earlier. We measure the total and average distance
moved by nodes as N is varied. The results are presented in
Fig. 5. We observe that Dtotal increases and then decreases in
a parabolic fashion as N is increased. This is because for low
values of N, although the initial distance between nodes is
large (due to uniform random distribution on [0,100]), there
are only a small number of nodes that contribute to Dtotal.

For large N ~ 200 the network is very dense, and most of it
is already biconnected, so Dtotal is low. The peaks are observed
for values of N ~ 100 because the network is large and frag-

� Figure 4. Execution of the block movement algorithm: a) initial configuration; b) after iteration 1; c) after iteration 2; d) final (bicon-
nected) configuration.

(a) Initial configuration

(c) After iteration 2 (d) Final (biconnected) configuration

(b) After iteration 1
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mented, and many nodes have to move significant distances to
achieve biconnectivity. We observe from Fig. 5b that the aver-
age distance moved by a node decreases linearly with increase
in N. This is due to the reason mentioned before.

Simulation Results for 2D Networks)
In this section, we report results of simulation of the execu-
tion of our biconnectivity algorithms on random 2D topolo-
gies. We simulated a 1 km × 1 km square area with up to 50
robots randomly distributed therein. All robots were assumed
to have omnidirectional radios with transmission ranges of
250 m each. The ground is assumed to be flat and devoid of
obstacles and trenches, thus allowing the robots to move any-
where they want. Harder versions of the problem that include
obstacles and imperfect radio propagation are beyond the cur-
rent scope of this work and are left for future investigation.
The initial random configuration of robots obeys the uniform
probability distribution while keeping the network connected.6
We simulated 100 runs for every data point with the same

parameters.
Figure 6 compares the performance of the block movement

algorithm against the baseline contraction algorithm with
respect to the Dtotal metric while varying the number of nodes
(and hence the density) in the network. We use α = 0.95 in
these simulations to restrict any significant extra movement
for the robot network. It can be observed that the block
movement algorithm completely outperforms the contraction
algorithm for all values of N considered. This is because con-
traction is an ad hoc approach which unnecessarily moves
every node towards the center.

We observe that Dtotal increases and then decreases for
both algorithms as N is increased from 10 to 50. The reason
behind this is similar to the one for the 1-D scenario — for
low values of N, there are only a few nodes that can move and
also since the topology is connected, the nodes are not very
far from each other. This results in a low value of Dtotal. As N
increases, more nodes have to move to make the network
biconnected, and this increases Dtotal. However, as N is
increased beyond a certain threshold, Dtotal begins to drop sig-
nificantly. This is because higher values of N result in richer,
denser topologies that do not have a large number of bicon-
nected components. In such topologies, a slight movement

� Figure 6. Distance moved by nodes (2D networks): a) Dtotal moved by nodes; b) Davg moved by a node.
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� Figure 5. Distance moved by nodes (1D networks): a) Dtotal moved by nodes; b) Davg moved by a node.
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results in biconnectivity.
We also plot the Davg metric against N in Fig. 6b. The

curves look similar to their counterparts for the Dtotal metric
apart from the fact that the peaks are shifted slightly to the
left due to division by N. For low values of N, there are only a
few blocks (Fig. 7) that are close to each other since the
entire network is connected (by construction); hence, Davg is
low.7 As N is increased, the nodes are more spread out and
number of blocks increases; a larger fraction of blocks have to
move in order to make the network biconnected. This results
in a high value of Davg. For large values of N, however, the
number of blocks decreases as the network is richly connected
at many places, and only a small fraction of blocks needs to be
moved to make the network biconnected. This results in low
values of Davg. In fact, for N = 50, a node has to move less
than 5 m on average while following the block movement
algorithm, whereas the contraction algorithm makes nodes
move about 30 m each.

Figure 8 shows the number of iterations needed to achieve
biconnectivity. We observe that the block movement scheme
requires fewer iterations than the contraction scheme. To be
fair to the latter, if the parameter α is lowered to the 0.7–0.8
range, fewer iterations should be required. However, in that
case, there is a possibility of contracting the robot network
more than necessary. Hence, we chose a high value for α.

Figure 9 illustrates the impact of the block movement algo-
rithm on the diameter of the network, which is defined as the
maximum length of a shortest path over all source-destination
node pairs. As expected, the diameter shrinks for all values of
N as it is a monotonic property, in the sense that it can only
decrease when edges are added to the network. However, the
gap between the two curves tends to shrink as N increases.
This is because there is little perturbation in the network for
large N (as illustrated in Fig. 6).

While this simulation study is by no means complete or
representative of the real world, it definitely gives us insight
into how block movement algorithms work and how they fare
against simple contraction schemes. Other metrics we feel are
candidates for future investigation are:
• The number of nodes moved by the algorithm
• Fairness in node movement

There can be application scenarios where these metrics are
as important as the total/average distance moved metric.

Simulations of Distributed Algorithms

We also simulated the proposed algorithms in the OPNET
Network Simulator where all the real-world protocols for
neighbor discovery, link formation, and link state routing were
simulated. The distributed version of the block movement
algorithm is trivial to construct from a centralized version
when all nodes in the network use proactive link-state routing
to share information about the entire topology. Each node
then executes a copy the same algorithm and moves to a new
location if the algorithm prescribes it to move there. Nodes
which are kept static by the algorithm do not move them-
selves. We also assume that all nodes start execution of the
block movement algorithm at the same time after the initial
topology discovery phase (by LSU exchange) has completed
and the topological views are the same at every node.

We note that the proposed algorithm cannot be used in its
current form in highly mobile networks. This is primarily
because location information frequently becomes stale in such
situations. This could possibly be rectified by depending less
on all location information but only on that of nodes in the
limited (k-hop) neighborhood.8 Another method is to dis-
tribute node trajectory information (if known) along with

� Figure 7. Average number of blocks in G (2D networks).
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� Figure 8. Average number of iterations (2D networks).
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8 This may result in greater movement by robots and sometimes may not
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� Figure 9. The impact of block movement on network diameter:
average diameter (hops) vs. N.
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location updates.
We also note that a high degree of mobility may be in

direct conflict with the goal to achieve biconnectivity if the
mobility is mission-driven. Therefore, greater coupling is nec-
essary between mission control, motion control, and network-
ing subsystems in every robot before such decisions are made.
This is a hard problem and is beyond the scope of this article.

Conclusions
Fault tolerance is an extremely desirable property in network
design, and biconnectivity is a baseline feature of fault toler-
ance. Since the position and movement of nodes in an ad hoc
network of robots are algorithmically controllable, greater
fault tolerance can be achieved by moving nodes to locations
that result in richer topologies. At the same time nodes
should move as little distance as possible insofar the desired
topological property is achieved. In this article we propose
simple algorithms for moving nodes to new locations such that
the resulting network becomes biconnected. We show that the
problem can be solved in polynomial time for 1D networks by
applying LP techniques. For 2D networks, we propose two
efficient heuristic algorithms to achieve the goal. We show
that our iterative block movement algorithm significantly out-
performs the contraction heuristic in the total distance trav-
eled metric.

Future Work
We recognize that due to the seemingly combinatorial nature
of the problem space, finding a exact polynomial time algo-
rithm for the 2D case is extremely hard, if possible at all. We
are actively pursuing the search for optimal algorithms or
approximation algorithms if the problem is NP-complete.

As the network grows in size, the communication overhead
of global LSU updates can be prohibitively expensive. Routing
protocols like HSLS [4] are used to mitigate this problem, but
they can result in different nodes having different views of the
network. We plan to extend our heuristics to function with
such imperfect knowledge of network topology. Randomized
movement algorithms are another potential area of research.

Another important dimension of the problem we plan to
investigate in the future is the trade-off between total move-
ment and robot coverage, which is defined as the total area
covered by the team of robots. Coverage is an important met-
ric since it has direct impact on the mission aspects of the
robotic task. Contraction algorithms can result in a significant
reduction in coverage and hence may not be suitable. We
believe that block movement algorithms can be adapted to
include coverage as a parameter in their calculations.
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