
Recognizing Traffic Jams with Hovering Data Clouds

Sándor P. Fekete∗, Christiane Schmidt∗, Axel Wegener†, and Stefan Fischer†
∗Institute for Mathematical Optimization, Braunschweig University of Technology,

Email:{c.schmidt,s.fekete}@tu-bs.de,
http://www.math.tu-bs.de/mo

†Institute of Telematics, University of Lübeck,
Email:{wegener,fischer}@itm.uni-luebeck.de,

http://www.itm.uni-luebeck.de

Abstract— Many complex structures in our modern world
exist independent of the individual entities they are com-
posed of, giving them an “organic” quality. Important ex-
amples include traffic phenomena, e.g., traffic jams; despite
of strong efforts over many years, centralized computing
has been unable to deal with the resulting problems in a
satisfactory manner. With the growing power of sensing
devices and wireless communication, participants in traffic
are no longer restricted to display passive, particle-like
behavior; instead, local data exchange makes it technically
feasible to aim for decentralized coordination between cars.

One fundamental concept for making use of these possi-
bilities comprises Hovering Data Clouds, which consist of
relevant information that is kept by ever-changing carriers;
a prototypical scenario arises in a traffic jam, where data is
maintained by passing it on to newly arriving cars. In this
study, we present algorithmic methods for this concept.

This paper is part of project AutoNomos1 (www.auto-
nomos.de), which aims at traffic control in a decentralized
manner.

I. Introduction

A. Complex Systems

A standard scientific method to understanding complicated
situations is to analyze them in a top-down, hierarchical man-
ner. This approach also works well for organizing a large variety
of structures; that is why a similar hierarchical, centralized
approach has worked extremely well for employing computers
in so many aspects of our life.

On the other hand, our world has become increasingly com-
plex. The resulting challenges have become so demanding that
it is impossible to ignore that a large variety of systems have
a very different structure: the stability and effectiveness of our
modern political, social and economic structures relies on the
fact that they are based on decentralized, distributed and self-
organizing mechanisms. (In this context, see [1] for a current
non-fiction bestseller.)

Until very recently, scientific efforts for studying computing
methodologies for decentralized complex systems have been
very limited. A current approach is based on the paradigm of
organic computing, which is described in the following section.

B. Organic Computing

Traditional computing systems are based on a centralized
algorithmic paradigm: data is gathered, processed, and the
result is administered by one central authority. Each of these
aspects is subject to obstructions. On the other hand, “Living
organisms (...) are to be treated as dynamic systems and con-
tain all infrastructure necessary for their development, instead
of depending on coupling to a separate thinking mind. We

1Supported by DFG Focus Program “Organic Computing” (SPP
1183), grant numbers Fe 407/11-1, Fi 605/9-1.

call this computing paradigm Organic Computing to emphasize
both organic structure and complex, purposeful action” [2].

The importance of Organic Computing has been motivated
as follows: “The advantages of self-organizing systems are
obvious: They behave more like intelligent assistants, rather
than a rigidly programmed slave. They are flexible, robust
against (partial) failure, and are able to self-optimize. The
cost of design decreases, because not every variant has to be
programmed in advance” [3].

C. Traffic as a Scenario for Organic Computing

When studying a new scientific paradigm, it is tempting to
use yet another top-down approach, by focusing on classifica-
tions, definitions, categories, terms, etc. Obviously, this would
be somewhat paradox (and hence, self-defeating) when applied
to distributed, decentralized systems. Moreover, the success
of a new paradigm hinges critically on convincing objectives
and actual results, in the context of scenarios for which the
appropriateness of the paradigm is evident.

A natural scenario for studying organic computing for com-
plex, decentralized systems is traffic, which combines a number
of important features: traffic and transportation affect the daily
lives of billions of people; they are of enormous economic,
social and political importance; they involve state-of-the-art
technology, so that the use of computing devices and methods
are possible and required; and they provide a good mixture of
sub-scenarios of varying complexity, all of which display very
clear self-organizing and decentralized features.

D. Project AutoNomos and Hovering Data Clouds

The key point of our project AutoNomos is a decentralized
method for traffic analysis and control, based on a bottom-up,
multilevel approach. Beyond the motivations described above,
it should be stressed that an aspect of particular relevance
is scalability: while the computational effort for a centralized
approach increases prohibitively with the number of verhicles,
a decentralized method relies on neighborhood interaction of
constant size.

At this point, we focus on the key concept of Hovering
Data Clouds (HDCs), which are virtual structures that ex-
ists independent of particular carriers. Hovering Data Clouds
are somewhat related to Virtual Autonomous Mobile Nodes
(AVMN), as introduced by Dolev et al. [4], [5], [6]; such an
AVMN is “an automaton that can make autonomous on-line
decisions concerning its own movement”. Note that the model
of an AVMN assumes that the current position is described by
a known external function; and while an HDCs corresponds to
a distributed structure that is carried by collective of individual
processors, considerable effort is spent on making sure that at

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI

198

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ISoLA.2006.30

198

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

978-0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ISoLA.2006.30

198

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on October 20, 2009 at 02:45 from IEEE Xplore. Restrictions apply.

any given time there is precisely one AVMN. Furthermore, the
concept of AVMNs focuses on the automaton-like properties,
which is realized by making sure that “each participating
processor keeps a replica of the AVMN’s current state and
a buffer of input events waiting to be applied to the state.”
This necessitates a continuing process of updates to ensure that
global properties of the AVMN are maintained.

The main point of this paper is to present the general
concepts of our project, and demonstrate their concrete use-
fulness for a first, relatively basic scenario: understanding and
controlling traffic jams for a single-lane highway. We show how
Hovering Data Clouds can be used to model critical features like
the front and back of a traffic jam, describe how they can be
formed and maintained in a self-organizing manner, and discuss
further extensions. It should be noted that this involves aspects
of decentralized data structures and communication in mobile
ad-hoc networks, which are interesting in their own right.

The rest of this paper is organized as follows. Section 2
presents aspects of self-organization in traffic and communi-
cation networks. This is followed by a detailed description of
Hovering Data Clouds and how they can be maintained in the
context of a basic traffic jam (Section 3). Finally, Section 4 gives
a summary and outlook to future perspectives.

II. Traffic, Self-Organization, and Communication

Traffic is one of the most important complex systems of
our modern world, with several levels of complexity reaching
from individual actions of a driver, over local phenomena like
density fluctuations and traffic jams, regional and temporal
traffic patterns, all the way up to long-range traffic development
and regulation.

In recent years, tremendous progress has been made in un-
derstanding the dynamics of traffic flow and traffic congestion;
however, a number of serious obstacles still prevent efficient
coordination and regulation of traffic in large-scale networks.
Three of the most serious impediments have been the incom-
pleteness of input data, the computational intractability of
forecasting the behavior of real-life traffic consisting of huge
numbers of vehicles, and the lack of local communication (and
thus: cooperation) between drivers.

With the advances of modern communication technologies,
it has become possible to keep track of virtually all data of
driving vehicles. Understanding traffic as a complex system
that is based on local interaction suggests studying distributed
computing approaches for simulating and forecasting traffic
phenomena. Finally, wireless ad-hoc networks allow real-time
interaction and data exchange between adjacent vehicles.

A. Traffic as a Self-Organizing Organic System

The structure of traffic is a phenomenon that is self-
organizing at several levels; see [7] for a philosophical discussion
of self-organization in multi-level models. But even though the
behavior of and the interaction between motorists has been
observed for a long time, the possibilities arising from modern
technology allowing direct and decentralized complex interac-
tion between vehicles has hardly been studied. The only efforts
we are aware of combine game theory with traffic simulations.
(For example, see the symposium organized by traffic physicist
Schreckenberg with game-theory Nobel laureate Selten [8].)
Neither make use of mobile ad-hoc networks and distributed
algorithms in large networks.

To the best of our knowledge, the idea of combining the
above aspects, i.e., self-organizing traffic by combining ad-
hoc networks with distributed decentralized algorithms has not
been studied so far. This may be because it requires combining
a number of different aspects, each of which has only been devel-
oped by itself in recent years. Mobile ad-hoc networks, models
for large systems of self-driven multi-particle systems, as well
as algorithmic aspects of decentralized distributed computing,
possibly with elements of game-theoretic interaction.

B. Computing Methodologies in Traffic and Telematics

As the interest in guiding and organizing traffic has been
growing over recent years, the scientific interest in traffic as a re-
search topic has developed quite dramatically. For an overview
(“Traffic and related self-driven many-particle systems”), see
the excellent survey [9]. Obviously, research on traffic as a whole
is an area far too wide for a brief description in this short
overview; we focus on a particular strain of research that is
particularly relevant for our proposed work, as it appears to
be most suited for simulation and extension to decentralized,
self-organizing systems of many vehicles.

It is remarkable that until the early 90s, efforts for simulat-
ing traffic were based on complex multi-parameter models of
individual vehicles, resulting in complex systems of differential
equations, with the hope of extending those into simulations for
traffic as a whole. Obvious deficiencies of this kind of approach
are manifold:

1) Because the behavior of even just an individual vehicle is
guided by all sort of factors influencing a driver, the hope
for a closed and full description appears hopeless.

2) Determining the necessary data for setting up a simula-
tion for a relevant scenario is virtually impossible.

3) Running such a simulation quickly hits a wall; even with
today’s computing power, simulating a traffic jam with a
few thousand individual vehicles based on such a model
is far beyond reach.

A breakthrough was reached when physicists started to use
a different kind of approach: instead of modeling vehicles with
ever-increasing numbers of hidden parameters, try to consider
them as systems of many particles, each governed by a very
basic set of rules. As Nagel and Schreckenberg managed to
show [10], even a simple model based on cellular automata
can produce fractal-like structures of spontaneous traffic jams,
i.e., complex, self-organizing phenomena. Over the years, these
models [11] were generalized to two-lane highway traffic [12],
extended for simulating commuter traffic in a large city [13],
and have grown [14], [15] to the point of being used for
real-time traffic forecasts for the 2250 km of public highways
in the state of North Rhine-Westphalia [16], [17], [18] (see
http://www.autobahn.nrw.de/.) Also, see the book chapter by
Nagel [19].

Parallel to the scientific developments described above, the
interest in and the methods for obtaining accurate traffic data
has continued to grow. The employment of induction loops
and traffic cameras has been around for quite a while, but
despite of enormous investments, e.g., 200 Mio. Euros by the
German Federal Ministry for Traffic, Construction and Housing
(BMVGW) [20] for putting up systems for influencing traffic,
the limits on tracking individual vehicles, as well as following
particular traffic substructures are obvious. A more recent
development is the use of floating car data: By keeping track

199199199

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on October 20, 2009 at 02:45 from IEEE Xplore. Restrictions apply.

of the movements of a suitable subset of vehicles (e.g., taxis in
Berlin city traffic), the hope is to get a more accurate overall
image of traffic situations, both in time and space [21]. However,
even this approach relies on the use of the central processor
paradigm, and does not allow the use of ad-hoc networks for the
active and direct interaction and coordination between vehicles.

C. Self-Organization in Communication Networks

In today’s communication world, wireless networks such as
GSM in the wide area and WLAN in the local area range
have become ubiquitous. Still, most applications using these
networks rely on a thoroughly managed infrastructure such
as, for instance, base stations in GSM or access points in
WLAN. Many research activities, however, already go one step
further and make use of the fact that more and more mobile
devices with radio communication capabilities are available.
These devices are not necessarily bound to communication
infrastructures, but can instead create a spontaneous network,
a so-called ad-hoc network, in order to allow communication
among all participating processor (and not necessarily to the
outside). In its sophisticated form, some of the processor in
an ad-hoc network act as relay stations and transport data
from a source to a destination that is not in direct radio range
(multihop ad-hoc network).

III. Hovering Data Clouds for Traffic Jams

A. Hovering Data Clouds

A dynamically changing system such as a traffic jam consists
of many ever-changing objects, as cars located at different
positions keep moving with respect to back and front of the
queue. If we want to maintain useful information related to the
back of a traffic jam, we have to keep shifting the related roles
from one car to the next, together with all relevant data. Thus,
we look for a local data structure with the following properties:

• The structure self-organizes with the onset of a traffic jam,
and it ceases to exist when the jam disappears.

• It is located at a useful virtual location, which is defined
by the traffic jam, e.g., its back.

• The structure continues to exist, even as their current
carriers move or change their role.

• It contains up-to-date information that describes the traffic
jam.

We call such a structure a Hovering Data Cloud (HDC). In
this section, we describe how to deal with the above properties
in the context of a relatively simple traffic scenario.

B. Scenario

We consider a single-lane highway on which cars move from
right to left (positions on the right of the road having lower val-
ues on a coordinate axis than locations on the left). Any vehicle
carries a computing and wireless communication device, each
with a unique identifier, and has a reliable way of measuring
time and location, e.g., by using GPS. Cars can communicate
if they are within broadcast range of each other; this range is
denoted by R. Communication delays are relatively small, we
assume 10ms for a single communication.

Now we examine traffic patterns. Depending on speed and
traffic density, a traffic jam may form. This gives rise to two
HDCs, one each at the front and back location of the queue, cp.
Figure 2; these HDCs are maintained while the jam continues
to exist. In the following we describe the details of how this can

be achieved; note that the same basic variables and processes
are maintained in each processor.

C. Variables

We will make use of the following variables and parameters
for each processor.

statusi (with possible values idle, joiningi, activei) describes
the current state of a processor, where the index i = 1, 2
refers to the HDCs marking back (1) and front (2) of the
traffic jam; initially, all processors are idle. In the absence of
a traffic jam, idle processors in the range of the HDC become
active immediately. If a jam exists, processors become joining,
if they lie within rHDC of the current HDC position; an active
processor becomes idle, if it ceases to be near the boundary
of the jam, i.e., if its distance to HDC position exceeds rHDC.
Note that the status joining is only necessary in the presence of
information that is not known to all processors. state describes
the values of all variables stored on a processor.

location1 and location2 describe the current positions of the
HDCs marking back (1) and front (2) of the traffic jam. For
clarity we should mention that the variables loc, v and ID refer
to the actual processor, l, g and ident refer to the processor from
which the actual message m was received. buffer is a memory
location for storing arriving messages. clock is used for keeping
track of real time. env is a matrix for storing the data of all
broadcasting processors within distance R (maximum size: 3×
⌈2R/(minimum distance)⌉).

If a processor has a right neighbor (i.e., a following car)
within congestion radius CR, the flag p is set to 1. Analogously,
q = 1 indicates a left neighbor (i.e., a preceding car) within
congestion radius CR.

The auxiiliary variables ahead, congestion counter, con-
gestion participant, congestion participant before, s, q before,
p before, Pw, Qw, pw, qw, t, front, back id, front id are all
intitialized with 0; back is initilaized with the largest possible
value of a location on the road.

If status joining is necessary, then v01
, v02

are the initial
states of the HDCs.

tdata, tsmdata, tinformation, taheadInfo are time slots that
are used for updating the indexed variables. tdata, tsmdata

occur alternately. tinformation, taheadInfo describe times with
evenly spaced intervals. The function settimer used with the
argument next-multiple(tx) (x ∈ {information, aheadInfo})
sets the timer on the next time of tx (even if some time elapsed
since the last timer was set), cf. Figure1. tab is the time period
that passes until all processors within 2R have started their
data interval.

A parameter that is related to the presence of a traffic jam is
the congestion radius CR that is a function of the current speed
of vehicles; if two cars violate this critical distance, it may be
an indication of a traffic jam.

Conversely, the congestion velocity CV, considers the velocity
in relation to the current distance; if two cars move slower than
apropriate for their current distance, this may also indicate a
traffic jam. (Note that this second parameter filters out cars
that tailgate at high speed. As pointed out by [22], it works
best to consider speed for recognizing traffic jams.)

Finally, d is the critical bound on the latency in LBcast.

D. Algorithm Description

We give details of the algorithmic steps; see Algorithm 1.

200200200

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on October 20, 2009 at 02:45 from IEEE Xplore. Restrictions apply.

t=0 t1 t2 t3

t
ab d

...

t
information

t4

smData Data

Fig. 1: Example for time slots and timer.

We consider a discrete sequence of time slots, ti, ti+1,
The interval between to consecutive time slots is divided into
two subintervals: a small interval (smData), and a bigger
one (Data), cf. Figure 1. Thus, in the end of smData (on-
Timer(smData)) the timer for Data is initiated and vice versa.

In onTimer(smData) the current processor position and its
velocity is only broadcast within CR. If a processor receives
such a message, it is treated in onTimer(NewMessage) (as
all received messages)—after an additional delay of d (see
LBrecv(m)). In case a processor receives such a message from
ahead, we set p equal to 1. Analogously, a message from behind
results in setting q equal to 1.

For sending more data (position, velocity, p, q) in a wider
range in onTimer(Data) we distinguish several situations. Only
if the processor is participating in a HDC or if it is neither
caught up in a traffic jam (ti) nor was so before (ti−1) but
falling below a certain velocity, it will send such a message.
This enables us to reduce the amount of transmitted messages.
However, non-active processors inside of a traffic jam or with
sufficient high speed do not send, the information is either not
important yet or the processor is not a potential participant of
a traffic jam.

Describing the consequences of being a congestion partici-
pant, we need to consider how a processor achieves this situa-
tion. A processor receives data messages from its surrounding
processors within R. The data of each such processor is stored in
env. Afterwards, it is checked whether the sending processor is
located close (less than CR) to the receiver and if the velocity
is sufficient low, e.g., clearly below 60 km/h (see [22].) If so,
the back is computed from the position of the two processors
and the previous back. Furthermore, the processor becomes
a participant of the traffic jam. Similarly we check for all
processor in env whether they are located close to the sending
processor and fall below a velocity of CV. In both cases we
increment a counter for the congestion (indicating a positive
number of vehicles).

If the counter was incremented, the processor lies close (less
than rHDC) to the back, the back has no right neighbor (thus,
it is really the back) and all messages from processor within the
range of R were received, then Congestion is invoked. The front
of the jam is treated analogously; CongestionAhead is invoked
here. If the HDC at the back has yet to receive information
from the HDC at the front, then the position of front is set to
the position of the most advanced processor within R.

The status of a processor is maintained in Congestion: if it
is active, we set a timer for Information, i.e., as long as the
processor is active, the position of the HDC at the back of the
jam, the position of the HDC at the front, and the current speed
of the back are broadcast. Only if the position of the back HDC
has a value greater than the current processor location, the
processor continues to broadcast, and processors approaching
this position become joining.

In CongestionAhead, status2 is updated; if the processor is

active, the timer for AheadInfo is set. This means that the
position of the front HDC is broadcast regularly, as long as
the processor is active. When such a message hdcdistance is
processed, the back HDC variable front indicating the position
of the front HDC is updated for an active processor: inactive
processors between front and back HDC pass on the message
towards the back.

With increasing distance, clustering and updating data is
performed by the HDC transportation layer. However, this is
not the focus of this paper.

Thus, messages are broadcast to:

• relate the positions of the processors (messages broad-
cast in onTimer(smData), onTimer(Data), processed in
onTimer(NewMessage)),

• transmit the information of the HDC at the front of
the traffic jam to the one at the back (messages in on-
Timer(AheadInfo)),

• transmit the information of the back HDC to following cars
(messages in onTimer(Information)).

IV. Summary and Conclusions

We have described a new concept for dealing with challenges
in Organic Computing that arise in the context of mobile
self-organizing structures. These Hovering Data Clouds are
particularly natural and relevant in the context of traffic, more
specifically, for traffic jams.

There are various extensions and generalizations. An obvious
next step is to extend our ideas to two-lane highways (possi-
bly stretching over several exits and even highway crossings),
or more refined HDCs that reflect substructures in a taffic
jam; other extensions and variants include the recognition of
bottlenecks in traffic, e.g., caused by a convoy of slow trucks,
accidents or emergency vehicles.

A qualitatively more challenging step is required when con-
sidering more advanced structures that consist of several HDCs:
an HDC simply marks front or back of a traffic jam, but eventu-
ally we are interested in more complex interaction between all
involved vehicles, e.g., when trying to smoothen out complex
stop-and-go patterns, mark advisable exits for following cars,
or even map possible detours. We call such high-level structures
Organic Information Complexes (OICs). They will be pursued
and discussed in future work.

Acknowledgment

We thank Elad Schiller for helpful discussions of Autonomous
Mobile Virtual Nodes.

R

front back

frontback

HDC1HDC2

CR

front back

driving direction

Fig. 2: Example for the two HDCs: different cars (rectangles)
determine front and back (assumption: all drive slow enough),
HDCs arise if all further conditions are met.

201201201

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on October 20, 2009 at 02:45 from IEEE Xplore. Restrictions apply.

Algorithm 1: HDCs for traffic jams

initialization:
i=0; etc. ;
buffer = ∅;
settimer(clock, smData);

onTimer(smData)
q before = Qw;
p before = pw;
back = ∞;
front = 0;
Pw = 0;
Qw = 0;
pw = 0;
qw = 0;
p = 0;
q = 0;
LBcast-CR(〈smdata, ID, loc, v〉); //broadcast in CR

settimer(next-multiple(tdata), Data); //as Data

follows smData

s = 0;

onTimer(Data)
t = clock ;
congestion counter = 0;
if (congestion participant = 1) ∨

((p = 1) ∧ (congestion participant before = 1)) ∨
((q = 1) ∧ (congestion participant before = 1))

then
congestion participant before = 1;

else
congestion participant = 0;
p-before = 0;
q-before = 0;

if (status1 = active1) ∧ (congestion participant = 0)
then

status1 = idle;
ahead = 0;

if (status2 = active2) ∧ (congestion participant = 0)
then

status2 = idle;

if (congestion participant = 0 ∧ v ≤ CVmax) ∨
(status1 = active1) ∨
(status2 = active2) then
LBcast(〈data, ID, loc, v, p, q〉); //broadcast in R

settimer(next-multiple(tsmdata), smData); //as
smData follows Data

congestion participant before =
congestion participant;
congestion participant = 0;

else if (congestion participant = 1) ∨
(congestion participant = 0 ∧ v > CVmax) then

congestion participant before =
congestion participant;
congestion participant = 0;
settimer(next-multiple(tsmdata), smData); //as
smData follows Data

i = 0;

LBrecv(m)
buffer = buffer ∪ 〈 m, clock〉;
settimer(clock + d, NewMessage);

Congestion
if status1 = active1 then

if (location1 < back) ∨ (location1 > back) then
location1 = back;

settimer(next-multiple(tinformation), Information);

if status1 = joining1 then
status1 = active1;
settimer(next-multiple(tinformation), Information);
location1 = back;

if status1 = idle then
if q before = 0 then

location1 = back;
state = v01

;
status1 = active1;
settimer(next-multiple(tinformation),
Information);

else
status1 = joining1; //status to collect all

dates

onTimer(Information)
if status1 = active1 then

LBcast(〈Congestion, location1, HDC2 location, v
〉);
settimer(next-multiple(tinformation), Information);
if |loc-location1| > rHDC then

status1 = idle; //If the distance is too

big, the processor //becomes idle. Thus,

on the next call of Information no

//further timer is set

ahead = 0;

CongestionAhead
if status2 = active2 then

if (location2 < front) ∨ (location2 > front) then
location2 = front;

settimer(next-multiple(taheadInfo), AheadInfo);

if status2 = joining2 then
status2 = active2;
settimer(next-multiple(taheadInfo), AheadInfo);
location2 = front;

if status2 = idle then
if p before = 0 then

location2 = front;
state = v02

;
status2 = active2;
settimer(next-multiple(taheadInfo), AheadInfo);

else
status2 = joining2;

onTimer(AheadInfo)
if status2 = active2 then

LBcast(〈hdcdistance, location2〉);

if |loc-location2| > rHDC then
status2 = idle;

202202202

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on October 20, 2009 at 02:45 from IEEE Xplore. Restrictions apply.

onTimer(NewMessage)
let m = min(m:〈 m, t 〉 ∈ buffer, t = clock - d);
if m = 〈data, ident, l, g, p-value, q-value〉) then

//checking critical values

env i = 〈ident, l, g〉;
if (| loc - l | < CR) ∧ (v < CV) then

back = min{back, loc, l};
if back==loc then back id = ID;
if back==l then back id = env i.ident ;
Pw = p-value of back id; Qw = q-value of
back id;
front = max{front, loc, l };
if front==loc then front id = ID;
if front==l then front id = env i.ident ;
pw = p-value of front id; qw = q-value of
front id;
congestion counter++;
s = 1;
congestion participant = 1;

//comparison: transmitting processor -

already received messages

for j, 1, i − 1 do
if (| l - envj.l | < CR) ∧ (g < CV) then

back = min{back, l, env j.l};
if back==envj.l then back id = envl.ident ;
if back==l then back id = env i.ident ;
Pw = p-value of back id; Qw = q-value of
back id;
front = max{front, l, env j.l };
if front==envj.l then front id =
env j.ident ;
if front==l then front id = env i.ident ;
pw = p-value of front id; qw = q-value of
front id;
if s = 0 then

congestion counter++;
s = 1;

if (congestion counter > 0) ∧ (|back - loc| < rHDC) ∧
(Pw = 0)

∧ (clock ≥t + tab + d) then
invoke Congestion;
congestion participant = 1;

if (congestion counter > 0) ∧ (|front - loc| < rHDC) ∧
(qw = 0)

∧ (clock ≥ t + tab + d) then
invoke CongestionAhead;
congestion participant = 1;

if ahead = 0 then HDC2 location = front;
i++;

if m = 〈Congestion, l, location hdc front, g〉 then
if l > loc then LBcast(〈Congestion, l,
location hdc front, g〉);
if |l - loc| < rHDC then status1 = joining1;

if m = 〈hdcdistance, L2〉 then
if status1 = active1 then

HDC2 location = L2; ahead = 1;

else if congestion participant = 1 then
LBcast(〈hdcdistance, L2〉);

if m = 〈smData, ident, l, g〉 then
if l < loc then p = 1; //right neighbor

if l > loc then q = 1; //left neighbor

References

[1] J. Surowiecki, The wisdom of crowds. London: Doubleday, 2004.
[2] O. C. Initiative, “A novel computing paradigm,” http://

www.organic-computing.org.
[3] C. Müller-Schloer, H. Schmeck, and T. Ungerer, “Organic Com-

puting – Proposal for a Focus Program,” 2004.
[4] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman,

and J. L. Welch, “Virtual mobile nodes for mobile ad hoc
networks.” in DISC, 2004, pp. 230–244.

[5] S. Dolev, S. Gilbert, E. Schiller, A. Shvartsman, and J. Welch,
“Autonomous virtual mobile nodes,” in 3rd Workshop on Foun-
dations of Mobile Computing (DIAL-M-POMC), 2005.

[6] Dolev, Lahiani, Gilbert, Lynch, and Nolte, “Virtual stationary
automata for mobile networks (short),” in PODC: 24th ACM
SIGACT-SIGOPS Symp. Princ. Dist. Comput., 2005.

[7] C. Gershenson and F. Heylighen, “When can we call a system
self-organizing?” in Advances in Artificial Life, 7th European
Conference, ECAL 2003, Dortmund, Germany, September 14-
17, 2003, Proceedings, ser. Lecture Notes in Computer Sci-
ence, W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and
J. Ziegler, Eds., vol. 2801, 2002, pp. 606–614.

[8] M. Schreckenberg and R. Selten, Human behavior and traffic
networks. Berlin: Springer-Verlag, 2004.

[9] D. Helbing, “Traffic and related self-driven many-particle sys-
tems,”Reviews of Modern Physics, vol. 73, pp. 1067–1141, 2001.

[10] K. Nagel and M. Schreckenberg, “A cellular automation model
for freeway traffic,” Journal de Physique I France, vol. 2, pp.
2221–2229, 2001.

[11] K. Nagel, “High-speed simulation of traffic flow,” Ph.D. disser-
tation, Center for Parallel Computing, 1995.

[12] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, “Two-
lane traffic simulation on cellular automata,” Physica A, vol.
231, pp. 534–550, 1996.

[13] M. Rickert and K. Nagel, “Experiences with a simplified mi-
crosimulation for the Dallas/Fort Worth area,” Int. J. Mod.
Phys. C, vol. 8, pp. 133–153, 1997.

[14] K. Nagel, M. Rickert, and C. L. Barrett, “Large-scale traffic
simulations,” in Proc. 2nd International Conference on Vector
and Parallel Processing, ser. Lecture Notes in Computer Science,
vol. 1215, 1997, pp. 3800–402.

[15] K. Nagel, “Cellular automata models for transportation ap-
plications,” in Proc. 5th International Conference on Cellular
Automata for Research and Industry, ser. Lecture Notes in
Computer Science, vol. 2493, 2002, pp. 20–31.

[16] O. Kaufmann, K. Froese, R. Chrobok, J. Wahle, L. Neubert, and
M. Schreckenberg, “Online simulation of the freeway network
of NRW,” in Traffic and Granular Flow ’99, D. Helbing, H. J.
Herrmann, M. Schreckenberg, and D. E. Wolf, Eds. Springer-
Verlag, 2000, pp. 351–356.

[17] S. F. Hafstein, R. Chrobok, A. Pottmeier, J. Wahle, and
M. Schreckenberg, “Cellular automation modeling of the Auto-
bahn traffic in North Rhine – Westphalia,” in Proceedings 4th
IMCAS Symposium on Mathematical Modelling, I. Troch and
F. Breitenecker, Eds., 2003, pp. 1322–1331.

[18] A. Pottmeier, S. Hafstein, R. Chrobok, J. Wahle, and
M. Schreckenberg, “The traffic state of the Autobahn network
of North Rhine-Westphalia: An online traffic simulation,” in
Proceedings 10th World Congress and Exhibition on Intelligent
Transport Systems and Services, 2003, document Nr. 2377.

[19] K. Nagel, “Traffic networks,” in Handbook of graphs and net-
works – From the genome to the internet, ser. Lecture Notes
in Computer Science, S. Bornholdt and H. G. Schuster, Eds.
Berlin: Wiley-VCH, 2003, ch. 11.

[20] B.-u. W. Bundesministerium für Transport, “Programm zur
Verkehrsbeeinflussung auf Bundesautobahnen 2002 bis 2007,”
2002, available at http://www.bmvbw.de.

[21] B. Kwella and H. Lehmann, “Floating car data analysis of urban
road networks,” in Proceedings Computer Aided Systems Theory
- EUROCAST’99, ser. Lecture Notes in Computer Science,
F. Pichler, R. Moreno-Dı́az, and P. Kopacek, Eds., vol. 1798.
Vienna, Austria: Springer, 2000.

[22] W. Brilon, M. Regler, and J. Geistefeldt, “Zufallscharakter
der Kapazität von Autobahnen und praktische Konsequenzen,”
Straßenverkehrstechnik, vol. 03 and 04, 2005.

203203203

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on October 20, 2009 at 02:45 from IEEE Xplore. Restrictions apply.

