Efficient Aggregation of encrypted data in Wireless Sensor Networks

Claude Castelluccia, Einar Mykletun, Gene Tsudnik

Refik Hadzıalıc
Efficient Aggregation of encrypted data in Wireless Sensor Networks

Agenda of the Presentation

- Introduction
- Sensor nodes
- Aggregation of data
- Protection
 - Encryption
 - Homomorphic property
 - Key stream generation and stream cipher
- Computation of Average and Variance
- Analysis
- Results
- Improvements
Introduction to the topic

- What is an WSN?
- Goals of WSNs
 - Monitoring of the environment
- Limitations of Nodes
 - Limited computation power
 - Battery powered
 - RF (ISM Band) power limitation

Node picture taken from prof. Christian Schindelhauer; Presentation: 08–A–WSN–Einfuehrung; page#: 2
Efficient Aggregation of encrypted data in Wireless Sensor Networks

Typical sensor nodes

MICA2Mote

My own developed Sensor nodes for a Wireless Alarm System

MICA2Mote picture taken from: http://www.eecs.berkeley.edu/~watteyne/index.html
Aggregation of Data

Sending of data without Aggregation

1 Data

2 Data

4 Data

5 Data

Sending of data with Aggregation

3 Data

235 Data

Data

Data

Data

versus

Efficient Aggregation of encrypted data in Wireless Sensor Networks
Aggregation of data

- In most cases we need only the max/min or the mean value.

Temp: 20°C

Temp: 25°C

Temp: 18°C

MAX(20, 25, 18) = 25

25°C

1 20°C

2 25°C

3:2

25°C

Idea taken from prof. Christian Schindelhauer; Presentation: 09-B-WSN-Aggr-1; Page #:5
Protection of data

- We need to protect our data from listeners (e.g. a competitor company who wants to use our sensor data for their products)

- Predator MQ-1

- Solution: Encrypt data

- End-to-end encryption

Source of the image: http://www.eteamz.com/10ULadyRedDevils/
Aggregation and encryption problems?

Aggregate the data without giving any node the privilege of knowing what is inside in the packet of its child?
Aggregation and encryption problems?

Aggregate the data without giving any node the privilege of knowing what is inside in the packet of its child?

YES!

By using the property of homomorphic encryption algorithms.
Property of homomorphic encryption algorithms

- What is homomorphic encryption?

- Voting system!

- $\xi(X+Y) = \xi(X) + \xi(Y)$, where $\xi(X)$ denotes encryption of some value X.

[Diagram showing encryption and decryption processes]
Encryption algorithm

- Encryption:
 \[c_i = Enc(m_i, k_i, M) = m_i + k_i (mod M) \]

- Decryption:
 \[Dec(C, K, M) = C - K (mod M) \]

where:
- \(m \) – message
- \(k \) – secret key
- \(M \) – big modulo number
- \(C \) – sum of decrypted messages \((C=c_1+c_2+\ldots+c_n)\)
- \(c \) – decrypted message (cipher)
- \(K \) – sum of all secret keys \((K=k_1+k_2+\ldots+k_n)\)
Conditions for the encryption

- Discrete logarithm scheme
 \[c_1 \cdot c_2 = \text{Enc}_k(m_1 + m_2) \]

- This property holds as long as:
 \[M = 2^{\lceil \log_2(p \cdot n) \rceil} \]
 \[p = \max (m_i) \]
 \[n \text{ – number of nodes} \]

- \(k \) – generated randomly using a stream cipher
Stream cipher

- e.g. plaintext message byte $M=145$
- e.g. keystream byte $k=234$

$$C = M \oplus k$$

$$C = 123$$

- RC4 can encrypt ~ 1MByte/s on 33 MHz, ATMEL MCU works on around 16 MHz

Efficient Aggregation of encrypted data in Wireless Sensor Networks

Computation of Average and Variance

- **DSP**

- **Average calculation**
 \[\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i \]

- **Variance calculation**
 \[V = \sum_{i=0}^{k-1} x_i^2 \]
 \[\text{Var} = E(x^2) - E(x)^2 \]
 \[E(x^2) = \frac{\sum_{i=0}^{k-1} x_i^2}{k} \]
 \[E(x) = \frac{\sum_{i=0}^{k-1} x_i}{k} \]
Analysis methods

- 3-ary tree
- No aggregation (No-Agg)
- Hop-by-Hop (HBH)
- Proposed Aggregation method (AGG)
Analysis methods

- **Average**
 - The number of bits sent per node at different levels in a 3-ary tree
- **Average and Variance**
 - The total number of bits transmitted throughout the WSN for 3-ary trees of various heights

Interests:
- The number of bits sent per node at different levels in a 3-ary tree
- The total number of bits transmitted throughout the WSN for 3-ary trees of various heights
Analysis

- No aggregation – safest, no bandwidth gain, nodes near the sink die asap

- HBH – best bandwidth gain, no end-to-end encryption, easy hackable, battery power used for encryption and decryption

- Authors method – bandwidth efficient, end-to-end encryption
Results – Comparison

Bit-length (Authors’ method)

height = 7

- Average
- Average & Variance

HBH Method

- HBH–Average
- HBH–Average & Variance

0% Faulty nodes

10% Faulty nodes

30% Faulty nodes

No aggregation method would require: 68859 bits
Result analysis

\[M_A = n \cdot t \]

- Take the log of this

\[56 + \log(t) + \log(n) =
\]
\[56 + \log(128) + \log(2187) =
\]
\[= 56 + 7 + 12 = 75 \]

where \(n \) – number of nodes
\(t \) – \(\max(m_i) \)
Is there a way to improve the compression ratio?
Is there a way to improve the compression ratio?

YES! There is a way of doing this by taking into account some known facts. BUT HOW?
Idea: replace frequently occurring symbols with a smaller bit representation than those that occur rarely

e.g. average temperatures in June, in Sarajevo

<table>
<thead>
<tr>
<th>Highest temp. June</th>
<th>Lowest temp. June</th>
</tr>
</thead>
<tbody>
<tr>
<td>+27°C</td>
<td>+14°C</td>
</tr>
</tbody>
</table>
Improvements – Delta encoding

- Original data stream: 17 19 24 24 21

- Delta encoded: 17 +2 +5 0 -3

- pros: when sample-to-sample values deviate slowly (which is mostly the case in temperature)

- cons: won’t work easily if average values are needed; requires knowing the order of sent data

Conclusion

- New approach to the problem
- End-to-end encryption
- Fast (not much CPU power is used)
- Aggregation of data
- Bandwidth efficient
- Equally distributed communication load
- Strong level of security
- Can be improved more (Huffman, Delta encoding, etc.)
References

- Efficient Aggregation of encrypted data in Wireless Sensor Networks, Claude Castelluccia, Einar Mykletun, Gene Tsudnik
- Drahtlose Sensornetze: Datenaggregation, Algorithmen für drahtlose Netzwerke, Christian Schindelhauer
- Applied Cryptography, Bruce Schneier, Stream Cipher
- A Method of Homomorphic Encryption, XIANG Guang–Li
- The rest of used things was already mentioned in the footer of slides.
Well, that would be it. Thank you for listening. I hope you enjoyed this as much as I did.

Questions!?!?!?