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Abstract. We study the complexity of distributed protocols for the
classical information dissemination problem of distributed gossiping. We
consider the model of random geometric networks, one of the main models
used to study properties of sensor and ad-hoc networks, where n points
are randomly placed in a unit square and two points are connected by
an edge/link if they are at at most a certain fixed distance r from each
other. To study communication in the network, we consider the ad-hoc
radio networks model of communication. We examine various scenarios
depending on the local knowledge of each node in the networks, and show
that in many settings distributed gossiping in asymptotically optimal
time O(D) is possible, where D is the diameter of the network and thus
a trivial lower bound for any communication.

1 Introduction

In this paper we study basic communication properties of random geometric
networks as motivated by mobile ad hoc networks and sensor networks. Our main
goal is to study under what conditions the dissemination of information can be
performed efficiently, in particular, in time proportional to the diameter of the
underlying network. We concentrate on the classical communication problem of
gossiping: disseminating the messages in a network so that each node will receive
messages from all other nodes.

Network model. We consider the standard model of random geometric networks
[21]. A random geometric network N = (V, E) is an undirected graph with node
set V corresponding to the set of transmitter-receiver stations placed indepen-
dently and uniformly at random (i.u.r.) 1 in the unit square [0, 1]2. The edges E
of N connect specific pairs of nodes. We consider the unit disc graph model in
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1 Another classical model assumes the points with Poisson distribution in [0, 1]2. All
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which for a given parameter r (called the radius) there is an edge between two
nodes p, q ∈ V if and only if the distance between p and q (denoted by dist(p, q))
is smaller than or equal to r.

To study communication in the network, we consider the so-called ad-hoc
radio networks model of communication [1,6,7,9,10,11,18]. We assume that all
nodes have access to a global clock and work synchronously in discrete time steps
called rounds. In radio networks the nodes communicate by sending messages
through the edges of the network. In each round each node can either transmit
the message to all its neighbors at once or can receive the message from one
of its neighbors (be in the listening mode). A node x will receive a message
from its neighbor y in a given round if and only if it does not transmit (is in
the listening mode) and y is the only neighbor of x that is transmitting in that
round. If more than one neighbor transmits simultaneously in a given round,
then a collision occurs and no message is received by the node. In that case,
we assume that the node cannot distinguish such a collision from the situation
when none of its neighbors is transmitting. Furthermore, we assume the length
of the message sending in one round is polynomial of n, and thus, each node can
combine multiple messages into one.

Geometric models of knowledge. We consider the model of ad-hoc networks,
in which the topology of the connections is not known in advance. In general,
the nodes do not know their positions nor they know the positions of their
neighbors, and each node only knows its ID (a unique integer in [1, nλ] for
an arbitrary constant λ; this assumption can be removed in the randomized
algorithm), its initial message, and the number of the nodes n in N . (Since in all
our settings, the running time is polynomial in n (because D is polynomial in n),
this assumption can be removed by the standard doubling technique, without
change the asymptotic time complexity.)

In many applications, one can assume that the nodes of the network have
some additional devices that allow them to obtain some basic (geometric) infor-
mation about the network. The most powerful model assumes that each node
has a low-power Global Position System (GPS) device, which gives the node
its exact location in the system [13]. Since GPS devices are relatively expen-
sive, GPS is often not available. In such situation, we consider a range-aware
model, the model extensively studied in the context of localization problem for
sensor networks [2]. In this model, the distance between neighboring nodes is
either known or can be estimated by received signal strength (RSS) readings
with some errors. We also consider another scenario, in which each node can be
aware of the direction of the incoming signals, that is, to measure the angles
between different neighbors [20].

Properties of random geometric networks. It is known that when r < (1− o(1)) ·√
ln n/(π n), the network is disconnected with high probability [14], and there-

fore gossiping is meaningless in that case. Therefore, in this paper we will always
assume that r ≥ c ·

√
log n/n for some sufficiently large constant c. This ensures

that the network is connected with high probability and therefore gossiping is
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feasible. With this assumption we can also make some further assumptions about
the structure of the input network. And so, it is well known (cf. [21]) that such
a random geometric network has diameter D = Θ(1/r) and the minimum and
maximum degree is Θ(n r2), where all these claims hold with high probability,
that is, with probability at least 1 − 1/nΩ(1). Therefore, from now on, we shall
implicitly condition on these events.

Related prior works. In the centralized scenario, when each node knows the entire
network, Kowalski and Pelc [18] gave a centralized deterministic broadcasting
algorithm running in O(D + log2 n) time and Ga̧sieniec et al. [11] designed a
deterministic O(D+∆ log n)-time gossiping algorithm, where D is the diameter
and ∆ the maximum degree of the network.

There has been also a very extensive research in the non-centralized (dis-
tributed) setting in ad-hoc radio networks, see, e.g., [3,7,12,17,18] and the refer-
ences therein. In the model of unknown topology networks, randomized broad-
casting can be performed in the optimal O(D log(n/D) + log2 n) time [7,17];
fastest deterministic algorithm runs in O(n log2 D) time [7]. The fastest ran-
domized algorithm for gossiping in directed networks runs in O(n log2 n) time
[7]; fastest deterministic one runs in O(n4/3 log4 n) time [12]. For undirected net-
works, both broadcasting and gossiping have deterministic O(n)-time algorithms
[1,4].

Dessmark and Pelc [9] consider broadcasting in ad-hoc radio networks in a
model of geometric networks. They consider scenarios in which all nodes either
know their own locations in the plane, or the labels of the nodes within some
distance from them. The nodes use disks of possibly different sizes to define their
neighbors. Dessmark and Pelc [9] show that broadcasting can be performed in
O(D) time.

Recently, the complexity of broadcasting in ad-hoc radio networks has been
investigated in a (non-geometric) model of Gn,p random networks by Elsässer
and Ga̧sieniec [10], and Chlebus et al. [5], and in the model of random line-of-
sight ad-hoc radio networks by Czumaj and Wang [8].

New contributions. In this paper we present a thorough study of basic com-
munication primitives in random geometric ad-hoc radio networks. We study
information dissemination in various models of random geometric ad-hoc radio
networks and we demonstrate that in many scenarios, the random structure
of these networks allows us to perform distributed gossiping in asymptotically
optimal time O(D).

We begin with the most restrictive model of local knowledge, the unknown
topology model. In this model, the nodes have no global nor local information
about the structure of the network. Still, we show that it is possible to perform
distributed randomized gossiping in O(n r2 log n + D) time, with high proba-
bility. This is the first asymptotically optimal algorithm for random geometric
ad-hoc radio unknown topology networks with r ≤ O((n log n)−1/3), in which
case the running time is O(D).

Next, we consider deterministic distributed algorithms in three models in
which the nodes have some geometric local information about the network. In
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the first model we consider, if a node communicates with another node, then he
is able to determine the distance to the node with which he communicates. In
the next model, each node is able to determine directions to all its neighbors.
Finally we consider the most powerful model in which each node knows its own
position in [0, 1]2. The first two models are fairly similar and for them we design
a distributed deterministic algorithms complete gossiping in optimal O(D) time,
assuming r ≤ O(n−7/16 log−5/16 n). The model in which each node knows its
own location is more powerful and we use the techniques from [9] to get a O(D)-
time deterministic algorithm for even larger range of r, r ≤ O(n−2/5 log−1/5 n).

For majority of applications of random geometric ad-hoc radio networks the
underlying networks are sparse or are aimed to be as sparse as possible. There-
fore, even though we present our algorithms to work for all values of r ≥
c
√

log n/n, our main focus is on networks with small values of r, just a little
above connectivity threshold. For such networks, our algorithms have asymptot-
ically optimal running times for a large range of the parameter r.

2 Preliminaries

For any node v, define N(v) to be the set of nodes that are reachable from v
in one hop, N(v) = {u ∈ V : dist(v, u) ≤ r}, where dist(v, u) is the Euclidean
distance between v and u. Any node in N(v) is called a neighbor of v, and set
N(v) is called the neighboring set of v. For any X ⊆ V , let N(X) =

⋃
x∈X N(x).

Define the kth neighborhood of a node v, Nk(v), recursively as follows: N0(v) = v
and Nk(v) = N(Nk−1(v)) for k ≥ 1. The strict kth neighborhood of v, denoted
by SNk(v), is defined as SNk(v) = Nk(v) \ Nk−1(v).

Strongly-selective families. Let k and m be two arbitrary positive integers with
k ≤ m. Following [3], a family F of subsets of {1, . . . , m} is called (m, k)-strongly-
selective if for every subset X ⊆ {1, . . . , m} with |X | ≤ k, for every x ∈ X there
exists a set F ∈ F such that X ∩ F = {x}. It is known (see, e.g., [3]) that for
every k and m, there exists a (m, k)-strongly-selective family of size O(k2 log m).

With the concept of strongly-selective families, we are now ready to proceed
to the following lemma.

Lemma 1. In random geometric networks, for any integer k, in (determinis-
tic) time O(k·n2 ·r4 ·log n) all nodes can send their messages to all nodes in their
kth neighborhood. The algorithm may fail with probability at most 1/n2 (where
the probability is with respect to the random choice of a geometric network).

Proof. The proof uses nowadays standard approach of applying selective families
to broadcasting and gossiping in radio ad-hoc networks, see, e.g., [3]. '(

3 Randomized Gossiping in Optimal O(D) Time

In this section, we present a simple randomized algorithm for broadcasting and
gossiping problem in random geometric networks whose running time is asymp-
totically optimal for small values of r. We see our algorithm as an extension of
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the classical broadcasting algorithm in networks due to Bar-Yehuda et al. [1] (see
also [7]), which when applied to random geometric networks gives asymptotically
optimal runtime for a more complex task of gossiping (for small r).

repeat
in each round, each node independently does:

the node transmits with probability 1
n r2

Theorem 1. The algorithm above completes gossiping in a random geometric
network after O(n r2 log n + D) rounds with probability at least 1 − 1/n. If r ≤
O

(
1

(n log n)1/3

)
, then the number of rounds is O(D).

Before we proceed with the proof of Theorem 1, let us first introduce some basic
notation. Let us divide the unit square into 16/r2 blocks (disjoint squares), each
block with the side length of r/4. For a block B, we also use B to denote the set
of nodes in block B; in this case, |B| is the number of nodes in block B.

The following lemma follows easily from Chernoff bounds.

Lemma 2. For every block B with probability at least 1−1/n4: (i) n r2

32 ≤ |B| ≤
n r2, (ii) |N(B)| ≤ 20 n r2.

A gossiping within a block is the task of exchanging the messages between all
the nodes in the block. Gossiping within a block B is completed if every node
v ∈ B receives a message from every other u ∈ B.

Lemma 3. Gossiping within every block completes in O(n r2 log n) steps with
probability at least 1 − 1

n2 .

Proof. Fix a node v ∈ B. In any single round, the probability that node v
transmits and no other node from N(B) \ {v} transmits is at least 1

n r2 (1 −
1

n r2 )|N(B)\{v}| ≥ 1
n r2 (1 − 1

n r2 )20 n r2 ≥ 1
n r2 e−40. Hence, in any single step, v

will send its message to all other nodes in block B with probability at least
1

e40 n r2 . After τ steps, v sends its message to all other nodes in block B with
probability at least 1−(1− 1

e40 n r2 )τ . Hence, by the union bound, the probability
that the gossiping within every single block will be completed after τ steps is
greater than or equal to 1 − n · (1 − 1

e40 n r2 )τ . By choosing an appropriate large
value of τ = O(n r2 log n), this probability will be greater than 1− 1

n2 , as needed.

At any time step t, let Mt(v) be the set of messages currently held by node v. For
any block B, let Mt(B) denote the set of common messages that are currently
held by all nodes of B, that is, Mt(B) =

⋂
v∈B Mt(v).

Lemma 4. Let B and B′ be two adjacent blocks and suppose that the gossiping
within block B has been completed. Then, for any t, Mt(B)∪Mt(B′) ⊆ Mt+1(B′)
with constant probability.
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Proof. By Lemma 2, |N(B′)| ≤ 20 n r2 and |B| ≥ n r2/32 with high probability.
Therefore, conditioned on these two inequalities, with probability p ≥ |B| · 1

n r2 ·
(1− 1

n r2 )|N(B′)| ≥ n r2/32 · 1
n r2 ·(1− 1

n r2 )20 n r2
, among all nodes in N(B′), there

is exactly one node in B that transmits at a given time step. For n big enough,
p is greater than some positive constant c′. This yields the claim.

Now, we are ready to complete the proof of Theorem 1. Let us focus on two
blocks B and B′. By Lemma 3, gossiping within every block will be completed
after the first O(n r2 log n) steps w.h.p. For fixed blocks B and B′, there is
always a sequence of blocks B = B1, B2, . . . , Bk = B′, such that Bi and Bi+1
are adjacent for any 1 ≤ i ≤ k − 1, and that k ≤ 8/r. By Lemma 4, after
each step, Bi will send its message Mt(Bi) to Bi+1 with probability at least c′,
where c′ is a positive constant promised by Lemma 4. Therefore, by a simple
application of known concentration results for random variables with negative
binomial distribution, after O(k/c′+log n) = O(D+log n) steps, all the messages
from B will be successfully transmitted to B′ with probability at least 1− 1/n4.
By applying the union bound on all pairs of blocks, we conclude that gossiping
is completed with probability at least 1 − 1/n2. '(

Randomized broadcasting. Our analysis in Theorem 1 can be improved for the
broadcasting problem, where for every r we can obtain the running time of
O(D + log n). (Details deferred to the full version.)

4 Deterministic Distributed Algorithm: Knowing
Distances Helps

In this section, we assume that c
√

log n/n ≤ r ≤ O(n−7/16 log−5/16 n) and show
that the gossiping in random geometric networks can be done optimally in time
O(D) in the range-aware model.

Building a local map. The key property of our model that we will explore in
the optimal gossiping algorithm is that by checking the inter-point distances,
we can create a “map” with relative locations of the points. Indeed, if for three
points u, v, w, we know their inter-points distances, then if we choose u to be the
origin (that is, has location (0, 0)), we can give relative locations of the other
two points v and w. (The relative location is not unique because there are two
possible locations, but by symmetry, any of these two positions will suffice for
our analysis.) We will show later that with such a map, the gossiping task can be
performed optimally. (Let us point out that even with local coordinate system,
the global consistent position information is still unavailable.)

The following lemma easily follows from Lemma 1 and the discussion above.

Lemma 5. After O(D) communication steps, all nodes u ∈ N can learn dist(u, v)
for any node v ∈ N τ (u), where τ = *1/(n2 r5 log n)+. (This algorithm may fail
with probability at most 1 − 1/n3.)
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This lemma implies not only that u ∈ N can learn dist(u, v) for any node v ∈
N τ (u), but also that it can set up its own local map of the nodes in N τ (u). From
now on, we will proceed with τ = *1/(n2 r5 log n)+.

Boundary and corner nodes. In our algorithm we consider two special types of
nodes: boundary nodes and corner nodes.

If a node u observes that there is a sector with angle π/2 that is centered at
u so that every neighbor of u in that sector is at a distance at most r/

√
2, then

u marks itself as a boundary node. It is easy to see that with high probability, a
node is a boundary node only if its distance to the boundary of [0, 1]2 is less than
r, and also every node which is at a distance at most r/2 from the boundary is
a boundary node. Similarly, a node u marks itself as a corner node if there is a
line going through u for which all neighbors of u that are on one side of the line
have distance at most r/2 from u. It is easy to see that with high probability,
every corner node is at a distance at most r from a corner of [0, 1]2 and every
node that is at a distance at most r/4 from a corner of [0, 1]2 is a corner node.

Next, we select one corner representative node for each corner of [0, 1]2. It can
be done easily by Lemma 1.

Transmitting along boundary nodes. Now, we will show that the gossiping among
boundary nodes can be performed in optimal O(D) time.

The process of the gossiping among the boundary nodes is initialized by the
four corner representative nodes. Each corner representative node u checks its
map of the nodes in N τ (u) and selects two farthest boundary nodes, one for
each boundary. Then, it sends a message to these two nodes with the aim of
transmitting its message to the two neighboring corner representative nodes

The process of sending messages to the corners works in phases. In each phase,
there are up to eight pairs of nodes &j

i and &j
i+1 such that &j

i wants to trans-
mit a message to &j

i+1, with both &j
i and &j

i+1 being boundary nodes and
&j

i+1 ∈ N τ (&j
i ). At the beginning of the phase, &j

i checks its local map and
finds a path Pij from &j

i to &j
i+1 of length at most τ . Then, it transmits to

its neighbors and request that only the first node on Pij will transmit the mes-
sage to &j

i+1. Then, the first node on Pij will transmit to its neighbors and
will request that only the second neighbor on Pij will transmit, and so on, until
&j

i+1 will receive the message. Once &j
i+1 received a message, it sends back an

acknowledgement to &j
i that the message has been delivered. The algorithm for

sending an acknowledgement is a reverse of the algorithm for transmitting a
message from &j

i to &j
i+1. The last step of each phase is to establish the next

nodes &j
i+2. If &j

i sent a message to &j
i+1 then &j

i+1 checks its map and selects
as &j

i+2 a node in &j
i+2 ∈ N τ (&j

i+1) that is farthest from &j
i . As an exception,

if one of the corner representative nodes is in N τ (&j
i+1) \ {&j

i }, then this corner
representative node is selected as &j

i+2 and then the process stops, i.e., &j
i+3

will not be selected.



Fast Message Dissemination in Random Geometric Ad-Hoc Radio Networks 227

Obviously, if there are no transmission conflicts between the eight pairs &j
i and

&j
i+1, then each phase can be performed in 2τ communication steps (including

sending the acknowledgements). The only way of having a transmission conflict
is that two pairs &j

i and &j
i+1, and &j′

i and &j′

i+1, are transmitting along the
same boundary and that in this phase N τ (&j

i ) ∩ N τ (&j′

i ) -= ∅. If this happen,
then the nodes &j

i and &j′

i may not obtain an acknowledgement. In this case,
both &j

i and &j′

i repeat the process of transmitting their messages to &j
i+1 and

&j′

i+1, respectively, using the selector approach from Lemma 1 that ensures that
the phase will be completed in O(τ · n2 r4 log n) = O(D) communication steps.

Let '1 and '2 be two adjacent corner representative nodes, and ('2,&
j
1, &

j
2,

&j
3, . . . '1) be a sequence of nodes initialized by '2 in the process described before.

It is easy to see that: (i) '1 receives all the messages of '2,&
j
1,&

j
2,&

j
3, . . ., (ii) '2

sends its message to all nodes in &j
1,&

j
2,&

j
3, . . . '1, and (iii) for any boundary

node v, there is a &j
i such that v ∈ N τ (&j

i ) (which holds because of the way we
pick &j

i ).
Therefore, each corner representative node will receive all messages from the

boundary nodes of its incident boundaries. If we repeat this process again, then
each corner representative node will receive the messages of all boundary nodes.
If we repeat this process once again, then all &j

i nodes will receive the messages
from all boundary nodes. If we now apply the approach from Lemma 1, then
each boundary node will receive a message from at least one &j

i , and hence it
will receive messages from all boundary nodes.

By our comments above, if there is no conflict in a phase, then the phase is
completed in 2τ communication steps, but if there is a conflict, then the number
of communication steps in the phase is O(τ n2 r4 log n). Now, we observe that if
a corner representative node originates a transmission that should reach another
corner representative node, then there will be at most a constant number of
phases in which there will be a conflict. Therefore, the total running time for
this algorithm is O(τ · D/τ) + O(τ n2 r4 log n) = O(D).

Lemma 6. The algorithm above completes gossiping among all boundary nodes
in O(D) time.

Gossiping via transmitting along almost parallel lines. Let ' be the corner repre-
sentative node with the smallest ID. Let '∗ be the corner representative node that
shares the boundary with ' (there are two such nodes) and that has the smaller
ID. Let ' select O(D/τ) boundary nodes ς1, ς2, . . . such that (i) ςi+1 ∈ N &τ/4'(ςi)
for every i, and (ii) ςj -∈ N &τ/32'(ςi) for every i, j, i -= j. It is easy to see
that such a sequence exists, and that ' is able to determine it because after
Lemma 6, ' knows all boundary nodes and their τ neighbors. Next, ' informs
all boundary nodes about its choice using the process from the previous section.
We now present an algorithm in which all the nodes ςi will originate a pro-
cedure Straight-line transmission aiming at disseminating the information
contained by these nodes along a line orthogonal to the boundary shared by '
and '∗.
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There are a few problems with this approach that we need to address. First of
all, we do not know the boundary of the unit square and instead, the goal will be
to consider lines orthogonal to the line L going through ' and '∗. The location of
L can be determined from the local map known to all the boundary nodes. Notice
that since the angle between the boundary of [0, 1]2 and L is at most O(r), L is a
good approximation of the boundary of [0, 1]2. Next, we observe that we will not
be able to do any transmissions along any single line because our network N does
not contain three collinear nodes with high probability. Therefore, our process
will need to proceed along an approximate line. We begin with the following
lemma that will help us quantify the angle between the perfect line we want to
transmit along and the line along which we will actually transmit. The lemma
easily follows from the Chernoff Bound.

Lemma 7. Let τ = *1/(n2 r5 log n)+ and r ≤ O
(

1
n7/16 log5/16 n

)
. Let u be a

node in N and let )u be any ray (half-line) starting at u. If all points q ∈ )u

with dist(u, q) ≤ τ · r are contained in [0, 1]2 then with high probability there is a
node w ∈ N &τ/4'(u) \ N (τ/32)(u) such that |!()uuw)| ≤ O(τ2r2).

Now, we use Lemma 7 to design a scheme that allows a point to transmit a mes-
sage along an approximate line. Our procedure Straight-line transmission(s, µ, ))
aims at transmitting a message µ from node s along (approximately) line )s,
s ∈ )s, so that all nodes that are close to )s will receive the message µ.

In Straight-line transmission(s, µ, )s), the node s initiates sending its message
µ along the line )s. The transmission process is performed in phases ; each phase
consists of sending a message from a node &i to another node &i+1 such that
)s is approximately equal to the line going through &i and &i+1, and &i+1 ∈
N &τ/4'(&i) \ N &τ/32'(&i). The nodes &i are determined recursively. Initially,
&0 = s and &1 is the node q ∈ N &τ/4'(s) \ N &τ/32'(s) for which |!()ssq)| is
minimized. If i ≥ 1 and &i is determined, then (i) if N τ (&i)\{&i−1} contains a
boundary node then &i+1 is undefined and the process is stopped; (ii) otherwise,
&i+1 is selected to be u ∈ N &τ/4'(&i)\N &τ/32'(&i) for which |!(&i−1&i&i+1)−
π| is minimized. Since &i knows the locations of all nodes in N τ (&i), &i is able
to select &i+1 using its local map. Observe that by Lemma 7, for every node &i,
i ≥ 1, we have |!(&i−1&i&i+1) − π| ≤ O(τ2 r2), with high probability. Next,
since dist(&i&i+1) = Θ(τ · r), we conclude that the last representative &i will
have index O( 1

τ r ). Hence, for every i ≥ 2, we have |!()su&i)| ≤ O( 1
τ r · τ2 r2) =

O(τ r) with high probability. The running time of each phase of Straight-line
transimmision is O(τ). So the running time of Straight-line transmission is O(τ ·
1

τ r ) = O(D).
We will run multiple calls to Straight-line transmission(s, µ, )s) with s being

the nodes ', '∗, and ς1, ς2, . . ., as defined earlier and with line )s being the line
going through s that is orthogonal to the line L (which is the line going through
' and '∗).

It is easy to see in random geometric networks, if u is the strict k(th) neighbor
of v, then dist(u, v) ≥ k r/4 with high probability. Hence the distance between
any of the points ', '∗, and ς1, ς2, . . . is at least Ω(τ r), so are the distance between
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the lines )s. On the other hand, as we argued above, every procedure Straight-
line transmission(s, µ, )s) is sending messages only among the nodes that are
at distance at most O(τ r) from the line )s, where this claim holds with high
probability. Therefore, in particular, the communication in the calls to Straight-
line transmission(s, µ, )s) will be done without any interference between the calls,
with high probability (to avoid collisions between adjacent lines we interleave
the transmissions in adjacent lines, yielding a O(1) factor slow-down).

Lemma 8. All calls to Straight-line transmission(s, µ, )s) with s being ', '∗, and
ς1, ς2, . . . can be completed in O(D) communication steps, with high probability.

Observe that while running the procedures Straight-line transmission, each node
that is transmitting can include in its message also all the knowledge it contains
at a given moment. Therefore, in particular, each last node &k will receive all
the messages collected on its path from s.

Next, let us observe that for every node q in the network N either q has been
selected as one of the nodes &i in one of the calls to Straight-line transmission
or one of the nodes in N τ (q) has. Indeed, since the distance between the adja-
cent lines )s is at most /τ/40 · r, for each point q ∈ N there is a line )s with
dist(q, )s) ≤ /τ/40·r/2. Therefore, there will be at least one node &i for Straight-
line transmission(s, µ, )s) with dist(q,&i) ≤ τ · r/2. This yields &i ∈ N τ (q) with
high probability. Because of this, if all nodes u ∈ N know the messages from
all nodes in N τ (u), then after completing the calls to Straight-line transmission,
for each node u ∈ N there will be at least one boundary node that received the
message of u.

If we do gossiping among the boundary nodes once again, all the bound-
ary nodes will have the messages from all the nodes in N . Next, we run again
Straight-line transmission(s, µ, )s) with s being ', '∗, and ς1, ς2, . . . as defined
above. Then, all the nodes &i will obtain the messages from all nodes in N .
Finally, since each q ∈ N has in its τ -neighborhood a node &i, we can apply
Lemma 1 to ensure that all nodes in N will receive the messages from all other
nodes in N .

Theorem 2. Let c
√

log n/n ≤ r ≤ O
(

1
n7/16 log5/16 n

)
. In the range-aware

model, there is a deterministic distributed algorithm that completes gossiping
in a random geometric network can be completed in deterministic time O(D).
The algorithm may fail with probability at most 1/n2.

5 Deterministic Distributed Algorithm: Knowing Angles
Helps

One can modify the algorithm from Theorem 2 to work in the scenario in which
a node cannot determine the distance between its neighboring node but instead,
it is able to determine the relative direction where the neighbor is located.
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Theorem 3. Let c
√

log n/n ≤ r ≤ O
(

1
n7/16 log5/16 n

)
. If each node receiving

the message is able to determine the relative direction from which the message
arrives, then gossiping in a random geometric network can be completed in de-
terministic time O(D). The algorithm may fail with probability at most 1/n2.

The algorithm is essentially the same as that described in Section 4 with two
differences. First of all, now the local map of a node does not have the exact
distances but it may be re-scaled. That is, using the same approach as presented
in Section 4, each node can build its local map where all the angles in the
map are the actual angles between the points, but only the distances may be re-
scaled. Secondly, we need another approach to determine if a node is a boundary
node or it is a corner node. This can be done by comparing the density of the
neighborhoods of the nodes (Details deferred to the full version.)

6 Deterministic Distributed Algorithm: Knowing
Locations Helps

We consider also the gossiping problem in random geometric networks in the
power model, where each node knows its geometric position in the unit square.
In such model, Dessmark and Pelc [9] give a deterministic algorithm for broad-
casting that (in our setting) runs in O(D) time. We can prove a similar result for
gossiping by extending the preprocessing phase from [9] and use an appropriate
strongly-selective family to collect information about the neighbors of each point
(Details deferred to the full version.)

Theorem 4. If every input node knows its location [0, 1]2, then there is a deter-
ministic algorithm that completes gossiping in a random geometric network in
time O(n2 r4 log n+1/r). In particular, if r ≤ O

(
1

n2/5 log1/5 n

)
then the running

time is O(D). The algorithm may fail with probability at most 1/n2.

7 Conclusions

In this paper we presented the first thorough study of basic communication as-
pects in random geometric ad-hoc radio networks. We have shown that in many
scenarios, the random structure of these networks (which often may model well
realistic scenarios from sensor networks) allows us to perform communication be-
tween the nodes in the network in asymptotically optimal time O(D), where D is
the diameter of the network and thus a trivial lower bound for any communica-
tion. This is in contrast to arbitrary ad-hoc radio networks, where deterministic
bounds of o(n) are unattainable.

Our study shows also that while there is a relatively simple optimal random-
ized gossiping algorithm and a deterministic one when the nodes have knowledge
about their locations in the plane, the other scenarios are more complicated. In
particular, we do not know if O(D)-time deterministic gossiping is possible in
the unknown topology model.
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