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Abstract
We propose and analyse a quasirandom analogue to the clas-
sical push model for disseminating information in networks
(“randomized rumor spreading”).

In the classical model, in each round each informed
node chooses a neighbor at random and informs it. Results
of Frieze and Grimmett (Discrete Appl. Math. 1985) show
that this simple protocol succeeds in spreading a rumor from
one node of a complete graph to all others within O(log n)
rounds. For the network being a hypercube or a random
graph G(n, p) with p ≥ (1+ε)(log n)/n, also O(log n) rounds
suffice (Feige, Peleg, Raghavan, and Upfal, Random Struct.
Algorithms 1990).

In the quasirandom model, we assume that each node
has a (cyclic) list of its neighbors. Once informed, it starts
at a random position of the list, but from then on informs its
neighbors in the order of the list. Surprisingly, irrespective
of the orders of the lists, the above mentioned bounds still
hold. In addition, we also show a O(log n) bound for sparsely
connected random graphs G(n, p) with p = (log n+f(n))/n,
where f(n) → ∞ and f(n) = O(log log n). Here, the
classical model needs Θ(log2(n)) rounds.

Hence the quasirandom model achieves similar or better
broadcasting times with a greatly reduced use of random
bits.

1 Introduction

1.1 Randomized Broadcast in Networks. The
study of information spreading in large networks has
various fields of applications in distributed computing.
One important example is the maintenance of replicated
databases on name servers in a large network [7, 13].
There are updates injected at various nodes, and these
updates must be propagated to all the nodes in the
network. In each step, two neighboring nodes check
whether their copies of the database agree and perform
the updates, if necessary. In order to be able to let all
copies of the database converge to the same content,
efficient broadcasting algorithms have to be developed.
Typically, these algorithms should be simple, resilient
against failures and should work locally, i. e., the nodes
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do not have any knowledge of the global topology.
One such broadcasting protocol is the so-called push

model. Initially, only one node of a graph G = (V, E)
owns a piece of information (or equivalently, knows a
rumor) which is spread iteratively to all other nodes: in
each time-step t = 1, 2, . . . every informed node chooses
a neighbor uniformly at random, to which the piece
of information is sent to. The crucial question is how
many time-steps are required such that all nodes become
informed (with high probability).

Pittel [20] proved that with a certain probability
a piece of information is spread to all nodes by the
push algorithm within log2 n + ln n + O(1) steps in a
complete graph Kn, tightening a former result by Frieze
and Grimmett [15]. Feige, Peleg, Raghavan, and Upfal
[13] were the first giving bounds which are valid for
general graphs. Moreover, they gave asymptotically
tight upper bounds on the runtime for hypercubes and
random graphs.

1.2 Quasirandom Push Model. In this work, we
propose a quasirandom analogue of the randomized
model described above. The basic setup is as in the
randomized push model, that is, in each time-step each
informed node tries to inform one of its neighbors.
However, the choices of these neighbors will not be
independently at random. Instead, we assume that
each node has a list of his neighbors and informs the
neighbors in the order of the list.

It is easily seen that in this model without any
randomness a bad choice of the lists can lead to a bad
behavior of the protocol. Consider, e. g., the complete
graph on n vertices labeled 1 to n and assume that each
node informs its neighbors in increasing order. Then it
takes n − 1 time-steps to spread a rumor from node n
to all others (in time-step i, all informed vertices inform
node i).

To avoid such behavior, we allow a little random-
ness. When a node receives the rumor for the first time,
it chooses a random position on his list. In the sequel,
it informs its neighbors starting with this position and
then continuing in the order of the list. When the end
of the list is reached, it continues at the beginning of
the list.

We call this model quasirandom push model, as it
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aims at imitating properties of the classical push model
with a much smaller degree of randomness. In our
analysis, we adopt a worst-case view, that is, we prove
bounds for the broadcast times independent of the par-
ticular lists. Hence in a practical application, the lists
may be chosen to suit internal technical representations
of the network.

1.3 Our Results. As previous work did for the
random push model, we analyse how long it takes to
spread a rumor from one node of a network to all
other nodes. Surprisingly, the greatly reduced degree of
randomness does not make broadcasting less efficient.
For complete graphs, hypercubes and random graphs
G(n, p), p ≥ (1 + ε)(log n)/n, we also obtain a bound
of O(log n) transmission rounds. These bounds hold for
all starting vertices and all orders of the lists.

Our O(log n) bound also holds for sparsely con-
nected random graphs G ∈ G(n, p) if p ≥ cn log(n)/n
and (cn − 1) log(n) → ∞. This contrasts with the
Ω(log2 n) bound shown by Feige et al. [13] for the case
that cn = 1+O(log log n/ log n) and shows a further su-
periority of our model (in addition to the reduced need
of random bits).

We also prove tight upper bounds of ∆·diam(G) and
2n − 3 for general graphs, which are again better than
the corresponding bounds of [13] for the random model.
All bounds at a glance are summarized in Table 1.

1.4 Related Work. This work is on quasirandom
broadcasting in the push model. In this subsection, we
mention a few results related to the push model and the
concept of quasirandomness.

While the focus of the papers cited in the first sub-
section and of this one is only on the time needed to
broadcast a rumor to all nodes of a network, one might
also want to minimize the number of messages needed
to do so. This aspect was regarded by Karp, Schin-
delhauer, Shenker, and Vöcking [16]. Amongst other
results, they combined the push algorithm with the so-
called pull algorithm and gave a distributed termina-
tion mechanism ensuring that on complete graphs only
Θ(n log log n) messages are generated.

This analysis has been recently extended to certain
random graphs [9]. In the random graph model consid-
ered there, every edge between two vertices exists inde-
pendently with probability p. Note that these graphs
serve as a model for peer to peer networks, e. g. [3].

In a very recent work [11], a slightly different algo-
rithm was introduced, where each vertex may choose 4
different neighbors for push and pull transmission. Sur-
prisingly, this minor change in the ability of the vertices
leads to an exponential decrease in the number of trans-

missions which reduces to Θ(n log log n).
A similar, but continuous-time model is the so-

called Richardson’s growth-model (often also termed as
first-passage percolation [14]) serving as a simple model
for the spread of disease. In this model, runtime analysis
has been often focused on hypercubes [1, 14] which
is closely related to the analysis of random subgraphs
of hypercubes. Besides the time after all nodes are
infected, also the time until the opposite node becomes
infected has been studied.

Quasirandomness means that we try to imitate a
particular property of a random process deterministi-
cally. This concept occurs in several areas of math-
ematics and computer science. A prominent example
are low-discrepancy point sets and Quasi-Monte Carlo
Methods (see e. g. Niederreiter [19]), which proved to
be superior over random sample points in numerical in-
tegration.

An example closer related to our work is a quasiran-
dom analogue of random walks introduced by Priezzhev,
Dhar, Dhar, and Krishnamurthy [21] and later popular-
ized by Jim Propp. Here the vertices are equipped with
a rotor pointing to a neighbor and a cyclic permuta-
tion of the neighbors. A walk arises from leaving the
current vertex in the rotor direction and then updating
the rotor to the next neighbor according to the order
given by the permutation. Some beautiful results exist
on this model, e. g., Cooper and Spencer [4] show that
if an arbitrary large population of particles does such
a quasirandom walk on an infinite grid Zd, then (un-
der some mild conditions) the number of particles on a
vertex at some time deviates from the expected num-
ber had the population done a random walk instead,
by only a constant cd. This constant is independent of
the number of particles and their initial position. For
the case d = 1, that is, the graph being the infinite
path, the constant c1 is approximately 2.29 [5]. For the
two-dimensional grid the constant is c2 ≈ 7.87 [8]. It
is also known that for the graph being an infinite k-ary
tree (k ≥ 3), the deviation between both models can be
unbounded [6].

The quasirandomness in our broadcasting model
lies in the property that a vertex in the long run
contacts each of its neighbors approximately equally
often, similar to what would have happened in the
random push model. In a sense, and this is typical for
quasirandomness, we do better in that the deviations
are at most one, whereas in the random push model
a vertex v after k contacts would have contacted each
neighbor only k/ deg(v) ± Θ(

√

k/ deg(v)) times.
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Graph class Broadcasting times

General graphs

R(G) = O(∆ · (diam(G) + log n)) w. h. p.1[13]
Q(G) ≤ ∆ · diam(G) w. p. 1 (Theorem 1)
R(G) ≤ 12n logn w. h. p. [13]
Q(G) ≤ 2n − 3 w. p. 1 (Theorem 1)

Complete k-ary trees
R(G) = Θ(k log n) w. h. p. (Section 3)
Q(G) = Θ(k log n/ log k) w. p. 1 (Section 3)

Hypercubes
R(G) = Θ(log n) w. h. p. [13]
Q(G) = Θ(log n) w. h. p. (Theorem 2)

Random graphs G(n, p) with R(G) = Θ(log2 n) w. p. 1 − o(1) [13]

Q(G) = Θ(log n) w. p. 1 − o(1) (Theorem 3)
p = (log n + f(n))/n, where
f(n) → ∞ and f(n) = O(log log n)
Random graphs G(n, p) with R(G) = Θ(log n) w. p. 1 − o(1) [13, 20]

Q(G) = Θ(log n) w. p. 1 − o(1) (Theorem 3)
p ≥ (1 + ε) log(n)/n, ε > 0
(including complete graph)

Table 1: Broadcasting times of different graphs G in the random (R(G)) and quasirandom (Q(G)) push model
(cf. Definition 1).

2 Precise Model, Notations and Preliminaries

As in the classical push model we aim at spreading a
rumor in an undirected graph G = (V, E). By n := |V |
we shall always denote the number of vertices of the
graph (=number of nodes of the network) considered.

Each vertex v ∈ V is associated with a cyclic
permutation πv : N(v) → N(v) of its neighbors (usually
simply viewed as list of neighbors). While above we said
that a vertex when it first obtains the rumor has chosen
a position on the list uniformly at random as starting
point for its broadcasting campaign, in the analyses the
following equivalent model will be advantageous. We
assume that initially each vertex has a position on the
list chosen uniformly at random, and that it updates
this position each time-step even if it is not informed
(“ever rolling lists”). More precisely, at the start of
the protocol each vertex chooses an initially contacted
neighbor iv uniformly at random from N(v). In each
time-step t = 1, 2, . . ., the vertex v sends the rumor
to vertex πt−1

v (iv), if it is informed, and does nothing
otherwise. In the first case, πt−1

v (iv) becomes informed
(if it is was not already).

The focus of our investigation is how long it takes
until some rumor known only by a single vertex is
broadcasted to all other vertices. We adopt a worst-case
view in that we aim at bounds that are independent of
the starting vertex and of all the lists.

Given a graph G = (V, E), the number of iterations

1w. p. stands for “with probability”. w. h. p. stands for “with
high probability”, which refers to an event which holds with
probability at least 1 −O(n−1).

(or time-steps) of a broadcasting procedure until the
rumor reaches all the vertices of G is a random variable
that depends on the topology of G.

Definition 1. Let R(G) be the number of iterations of
the random push model until all vertices in G receive the
rumor. Analogously, let Q(G) be the maximal number
of iterations of the quasirandom push model until all
vertices in G receive the rumor for all starting vertices
and all possible lists.

Note that both random variables are defined on different
probability spaces. Our aim is to bound Q(G) and to
compare it with R(G) for different graph classes.

In the analysis of the quasirandom push model, it
will occasionally be convenient to assume that a vertex
after receiving the rumor does not transfer it on for
a certain number of time-steps (delayed model). By
the assumption of ever rolling lists, it is clear that this
will only result in other vertices receiving the rumor
later. Consequently, the random variable describing the
broadcast time of this model strictly dominates Q(G).
Of course, this also holds if several vertices delay the
propagation of the rumor.

Lemma 1. The random variable describing the broad-
cast time of the quasirandom push model with arbitrary
delays dominates Q(G).

Occasionally, we shall need a notation for the fact
that some vertex informs another one would have done
so if it had the rumor in time. In this case we say
the first vertex contacts the second (c.f. [10]). More
precisely, a vertex u1 ∈ V contacts another vertex um ∈

775



V within the time-interval [a, b], if there is a path
(u1, u2, . . . , um−1, um) in G and t1 < t2 < · · · < tm−1 ∈
[a, b] such that for all j ∈ [1, m − 1], π

tj−1
uj (iuj

) = uj+1.
Graph theoretical notation: Throughout the

paper, we use the following notation. For a vertex
v of a graph G = (V, E), we denote by N(v) :=
{u ∈ V | {u, v} ∈ E} the set of its neighbors and
by deg(v) := |N(v)| its degree. For any S ⊆ V , let
degS(v) := |N(v) ∩ S|. Let ∆ := maxv∈V deg(v) be
the maximum degree. The distance dist(x, y) between
vertices x and y is the length of the shortest path from
x to y. The diameter diam(G) of a connected graph G
is the greatest distance between any two vertices in G.

All logarithms log n are natural logarithms to the
base e in the following. As we are only interested in the
asymptotic behavior, we will sometimes assume that n is
sufficiently large. We should also mention that in order
to simplify the presentation we will usually not try to
minimize the constant factors in our runtime analysis.

3 General Results

In this section, we give two bounds for the broadcast
time in general graphs. The corresponding bounds for
the random model are R(G) = O(∆ · (diam(G)+log n))
and R(G) ≤ 12n logn w. h. p. [13].

Theorem 1. For any graph G = (V, E),

(i) Q(G) ≤ ∆ · diam(G) w. p. 1,
(ii) Q(G) ≤ 2n − 3 w. p. 1.

Proof. (i) Let P = (u = u0, u1, . . . , v = udist(u,v)+1)
be a shortest path from u to v. Clearly, u1 becomes
informed after at most deg(u0) ≤ ∆ time-steps and
inductively the claim follows.

(ii) Let v ∈ V and let P = (u = u0, u1, . . . , v = u!)
be a shortest path from u to v. Then, as observed
already in [13], any vertex w not lying on P has at
most three neighbors on P , and these are contained in
{ui−1, ui, ui+1} for some i ∈ [1, # − 1]. If some w not
lying on P has exactly three neighbors ui−1, ui, ui+1 on
P , we call it a counterfeit of ui (as ui and w have, apart
from themselves, exactly the same neighbors on P).
Denote by C(ui) the set of counterfeits of ui. Without
loss of generality, we may choose P in such a way that
for all i ∈ [1, #− 1], ui is informed not later than any if
its counterfeits.

Note also that any vertex ui on the path has only
ui−1 and ui+1 (if existent) as neighbors on the path.

Let ti denote the time that vertex ui becomes
informed. Then, clearly, t0 = 0. By definition of
the Propp machine and choice of P , we have t1 ≤
t0+ |N(u0)\C(u1)| = t0+ |NV \P(u0)|+1− |C(u1)|. For
2 ≤ i ≤ # − 1, similarly, we have ti ≤ ti−1 + |N(ui−1) \

C(ui)| = ti−1 + |NV \P(ui−1)| + 2 − |C(ui)|. Finally,
t! ≤ t!−1 + |NV \P(u!−1)| + 2. We conclude

t! ≤
!−1
∑

i=0

|NV \P (ui)|−
!−1
∑

i=1

|C(ui)| + 2#− 1.

Now each vertex w not lying on P can contribute
at most 2 to the above expression (if it has three
neighbors on P , then it is also a counterfeit). Hence
t! ≤ 2(n − #− 1) + 2#− 1 = 2n− 3. !

The first bound is asymptotically tight for any
constant-degree graphs (including e. g. two- or three
dimensional meshes), as Ω(diam(G) + log n) is an obvi-
ous lower bound for every graph. Furthermore, a path
of length n − 1 fulfills the second bound of Theorem 1
with equality.

Compared to the general upper bound on the ran-
dom push model of R(G) = O(∆(diam(G) + log n))
w. h. p. [13], the quasirandom model may save a small
factor on graphs G with diam(G) = o(log n). Roughly,
the additional factor is caused by the Coupon Collector
problem [18]. On complete k-ary trees T the quasiran-
dom model outperforms the random model by a factor of
log k as it is easy to see that R(T ) = Θ(k log n) w. h. p.
and Q(T ) = Θ(k log n/ log k) w. p. 1.

4 Quasirandom Broadcast on Hypercubes

We now focus on the hypercube as this is an im-
portant network for parallel computation. Let H =
(V, E) denote the d-dimensional hypercube, where V =
{0, 1}d, d = log2 n and E = {{u, v} | ‖u − v‖1 = 1}.

Theorem 1 gives an upper bound of Q(H) =
O(log2 n) w. p. 1. The following result shows that this is
the best possible upper bound if we insist on probability
1.

Proposition 1. For the hypercube H with n vertices,
Q(H) = Θ(log2 n) holds with non-zero probability.

Proof. We prove that there exist lists and initially
contacted neighbors for each vertex such that Ω(log2 n)
steps are required to inform all vertices independent of
the initially informed vertex. For any vertex x ∈ {0, 1}d

and i ∈ [1, d] let x(i) be the vertex obtained by flipping
the i-th bit of x. Then, for any vertex x we choose the
neighbor list to be (x(1), x(2), . . . , x(d)) and the initially
contacted neighbor to be x(1). Assume that initially
the vertex s = (s1, . . . , sd) owns the rumor. Due to the
construction, an arbitrary vertex v requires k steps to
send the information to neighbor v(k) and by simple

induction we require
∑d

k=1 k = Ω(d2) = Ω(log2 n) steps
to inform s = (1 − s1, . . . , 1 − sd). !
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For the random push model it is known that it in-
forms w. h. p. each vertex in R(H) = Θ(logn) steps [13].
The following theorem proves that the quasirandom
model also has a runtime of Q(H) = Θ(log n) w. h. p.

Theorem 2. For the hypercube H with n vertices,
Q(H) = Θ(log n) w. h. p.

Proof. By symmetry we may assume that u = 0d knows
a rumor at the beginning. Our proof consists of three
stages. In the first stage we show that after O(d)
steps a large set of informed vertices I ′ which does not
contain vertices which are too close to each other exists.
Similarly, a large set of uninformed vertices U must
exist in order to keep a fixed vertex w at step O(d)
uninformed. In particular, every vertex of I ′ will be
close to some proper vertex u ∈ U . Finally, we show
that one of the informed vertices in I ′ informs one close
vertex of U with high probability implying that w is
also informed after O(d) steps. A graphical illustration
of our proof can be found in Figure 1. Before going
into the details we should remark that for the sake of
readability we will frequently use real quantities where
integers are required.

Forward Approximation: (from step 0 till step 4d)
We first show that after 4d steps a large set of informed
vertices exists. Let Li be the set of vertices with
‖x‖1 = i. Note that after 2d steps, L0 ∪ L1 has been
informed completely.

Consider some time-step t and denote by It the set
of informed vertices. We may assume that all initially
contacted neighbors of It ∩ Li are still to be chosen
u. a. r. Notice that the set of edges between It ∩ Li and
Li+1 satisfy |E(It ∩Li, Li+1)| =

∑

v∈Li+1
degIt∩Li

(v) =

|It ∩ Li| · (d − i). Our goal is to show that a large
set of vertices in Li+1 will be also informed after O(1)
additional steps. The probability that a vertex v ∈ Li+1

becomes not informed after 10 steps is

Pr [v -∈ It+10] ≤
∏

u∈N(v)∩It∩Li

(

1 −
10

d

)

=

(

1 −
10

d

)degIt∩Li
(v)

.

By linearity of expectations we get

E [|It+10 ∩ Li+1|] =
∑

v∈Li+1

Pr [v ∈ It+10]

≥
∑

v∈Li+1

1 −

(

1 −
10

d

)degIt∩Li
(v)

≥
∑

v∈Li+1

1 − e−
10 degIt∩Li

(v)

d .

Let us assume in the following that i ≤ d
7 . Then due to

degIt∩Li
(v) ≤ i+1 and 1+ x

2 ≥ exp(x) for −1.5 < x < 0
we get

E [|It+10 ∩ Li+1|] ≥
∑

v∈Li+1

10 degIt∩Li
(v)

2d

= |It ∩ Li|
(d − i)10

2d
≥ 4.25|It ∩ Li|.

Let f : N(u1)×N(u2)× . . .×N(u|It∩Li|) → N describe
the random variable of |It+10 ∩ Li+1| depending on the
choices of the initially contacted neighbors, which are
u. a. r. and independent from each other. Since some
fixed vertex can only inform at most 10 vertices within
10 steps, f satisfies the Lipschitz condition and the
method of independent bounded differences [17] gives

Pr [f ≤ E [f ] − t] ≤ exp
(

−
t2

2|It ∩ Li|102

)

and by setting t = 1
4 |It ∩ Li| we conclude by using

|It ∩ Li| ≥
d(d−1)

2 that

Pr [f ≤ 4|It ∩ Li|] ≤ exp
(

−
1
4 (|It ∩ Li|)2

200|It ∩ Li|

)

≤ 2−3d,

whenever d is large enough.
Iterating over all levels 0 ≤ i ≤ d/7 we require at all

2d+(d/7−2) ·10 ≤ 4d time-steps to get w. p. 1−d2−3d

that

|I4d ∩ Ld/7| ≥
d(d − 1)

2
4d/7−2 ≥ 4d/7.

Consider now the following iterative procedure (cf. [13])
of transforming the set I4d into another set I ′4d which
is empty at the beginning. As long as I4d is nonempty,
we first pick an arbitrary vertex, say v, of I4d and put
v into I ′4d. Then we remove v of I4d together with all
vertices u ∈ I4d such that dist(u, v) ≤ d/64 and go to
the next iteration. Note that the vertices of I ′4d have a
pairwise distance of at least d/64. We may also conclude
that I ′4d is of size

4d/7

∑d/64
k=0

(

d
k

)

≥
4d/7

(64e)d/64
≥

(11

10

)d
,

where we have used the inequality
∑m

i=0

(n
i

)

≤ ( en
m )m.

Backward Approximation: (from step 6d till step
1542d) The key idea is now to analyse the propagation
of the rumor in the reverse order. Roughly, we will
show that to keep a vertex w uninformed at some time-
step t′ = Θ(d), also a lot of other vertices have to be
uninformed at time-step t′−O(d). More formally, these
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vertices contact the vertex w within the time-interval
[t′ −O(d), t′].

Again due to the symmetry of H , we may restrict
our attention to the vertex w = 1n. Similar to the
definition of It, denote by Ut the set of vertices which
contact the vertex w within the time-interval [t, 1542d],
where t ≤ 1542d. We will now show that U6d contains
some vertex v such that dist(0d, v) ≤ d/256. Let us as-
sume that for some time-step t, Ut ∩ Li -= ∅ for some
d/256 ≤ i ≤ d. We will bound the time t′ ≤ t after
Ut′ ∩ Li−1 -= ∅. Observe that there are i many ver-
tices in Li−1 which have an edge to some fixed vertex
v′ ∈ Li. Due to the “ever rolling lists”, we may assume
that for a vertex in Li−1 the number of steps till it con-
tacts vertex v′ is uniformly distributed in [1, d]. Note
that this uniform distribution is stochastically smaller
than the exponential distribution with mean d plus 2.
Therefore, we may assume that this number of steps is
exponentially distributed with parameter 1/d (expected
value d). Furthermore, recall that the minimum of i ex-
ponentially distributed random variables with expecta-
tion d is d/i ≤ 256 [18]. Thus, we may upper bound the
random variable X until a vertex in Ld/256 contacts v′

by a sum of 255
256d independent exponentially distributed

random variables Xi with mean 256. As the moment-
generating function for Xi equals E

[

etXi
]

= 1/256
1/256−t ,

where −1/256 ≤ t ≤ 1/256, we may use a Chernoff

bound [18] for X =
∑255/256d

i=1 Xi to obtain

Pr [X ≥ 1536 · d] ≤
E

[

etX
]

et·1536d
=

∏255/256d
k=1

1/256
1/256−t

et·1536d

t=1/512
≤

2d

e1/512·1536d
≤ 2−5/2d,

where the first equality is due to the independence of
the Xi.

Hence, a vertex with distance d/256 from 0n is in
U6d w. p. 1 − 2−5/2d. Notice that we may replace 0n

by any other vertex and just ignore any bits which are
already ones. With this we can conclude that from each
vertex there exists another vertex of distance at most
d/256 which lies in the set U6d w.p. 1 − 2−3/2d. Recall
again that due to the symmetry of H the vertex w could
have been replaced by any other vertex of the graph.

Coupling: (from step 4d till step 6d) From the first
part of this analysis we know that at time-step 4d there
exists a certain, large enough set of informed vertices
I ′4d such that all vertices have a pairwise distance of
at least d/64. We just have seen that for all vertices
v ∈ V there is at least one vertex u(v) ∈ U6d such
that dist(v, u(v)) ≤ d/256. Therefore, there exists a
bijection Φ : I ′4d → U6d such that for all v ∈ I ′4d it holds
dist(v, Φ(v)) ≤ d/256. It remains to show that at least

1. Stage: Forward Approx. 3.: Backward Approx.2.: Coupling

0 1542d6d4d

t

w = 1nu = 0n

1
256 d

Figure 1: A Sketch of the proof of Theorem 2. The circles
represent I ′(4d), the rectangles the corresponding v′′ and
the triangles represent Φ(I ′(4d)).

one vertex v ∈ I ′4d will contact Φ(v) within the time
interval [4d+1, 6d] since this implies that w will be also
informed after 1542d time-steps.

We now derive the probability that a specific v ∈ I ′4d
informs its respective Φ(v) ∈ U6d. Let v′ ∈ I4d

with dist(v, v′) ≤ d/256 be such that dist(v′, Φ(v)) is
minimal. W. l. o. g. u(v) -∈ Φ(v′). Let v′′ be some proper
neighbor of v′ which gets informed at time 4d, . . . , 4d +
d− 1 and is closer to Φ(v). The first neighbor to which
v′′ sends the rumor is u. a. r. and decreases the distance
to u(v) with probability dist(v′′, Φ(v))/d. Iterating this
process and using the fact that n! ≥ (n/3)n for every
integer n gives a probability of

d/256
∏

k=1

k

d
≥

dd/256

(768d)d/256
≥ 768−d/256 ≥

(

11

12

)d

for reaching Φ(v) before time-step 6d.
By construction and the fact that we have only con-

sidered shortest paths between v′′(v) and Φ(v), the cor-
responding events w. r. t. each v′′(v) and its respective
Φ(v) are independent from each other. Hence, the prob-
ability conditioned on the success of the forward and
backward approximation that no path succeeds is at
most

(

1 −
(11

12

)d)(11/10)d

≤ e−( 121
120 )d

≤ 2−3/2d.

Therefore, with probability at most 3·2−3/2d ≤ 2−2d

the vertex w will remain uninformed at time-step 1542d.
Hence, the probability that at this time all vertices are
informed is at least 1−2d2−2d = 1−2−d. Since Ω(log n)
is obviously a lower bound, as the number of informed
vertices can at most double in each step, the claim of
the theorem follows. !
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5 Quasirandom Broadcast on Random Graphs

In this section we show that the quasirandom push
model has a logarithmic runtime as well on many ran-
dom graphs. Let G(n, p) be the probability space of
graphs with n vertices and each edge present indepen-
dently with probability p. We only consider the case
that p ≥ cn log(n)/n, where (cn − 1) log(n) → ∞. By
[12], such graphs are connected w. p. 1 − o(1).

Feige et al. [13] showed for sparse random graphs
G ∈ G(n, p) where c = 1 + O(log log n/ log n) that
the random push model needs w. p. 1 − o(1) R(G) =
Θ(log2 n) iterations to spread a rumor to all vertices.
They also showed that for denser random graphs G
with p ≥ (1 + ε) log(n)/n, for some fixed ε > 0, that
w. p. 1 − o(1) R(G) = Θ(log n).

Theorem 3 below shows for a much larger class
of random graphs that the quasirandom model only
requires Q(G) = Θ(log n) w. p. 1 − o(1). Note that this
also includes the complete graph (p = 1) and the space
G(n, 1/2) which chooses uniformly at random from all
graphs on n vertices.

Theorem 3. For random graphs G ∈ G(n, p) with p ≥
cn log(n)/n where (cn−1) log(n) → ∞, the quasirandom
push model informs all vertices within Q(G) = Θ(log n)
steps w. p. 1 − o(1).

Proof. As the theorem covers a large class of random
graphs, we sometimes will have to distinguish between
“sparse” random graphs with p = Θ(log(n)/n) and
“dense” random graphs with p = ω(log(n)/n).

For dense random graphs, there exist constants
α < 1 and β > 1 such that w. p. 1− o(1) the minimum
degree is at least αD(n) and the maximum degree is at
most βD(n) where D(n) := p(n − 1) is the expected
degree of a vertex.

For sparse random graphs, Cooper and Frieze [2]
showed that w. p. 1 − o(1) there are at most n1/3 small
vertices, i. e., of degree ≤ log n/20, and that no two
small vertices are within a distance of log n/(log log n)2

or less. A large vertex denotes a vertex which is not
small. By definition, the degree of all large vertices is
at least αD(n) with α := 1/(20cn) and D(n) defined
as above. Analogously to dense random graphs, there
is also a constant β > 1 such that w. p. 1 − o(1) the
maximum degree of sparse random graphs is at most
βD(n). In dense random graphs there are no small
vertices w. p. 1 − o(1).

Similar to the proof of Theorem 2, the analysis con-
sists of a forward approximation, a backward approxi-
mation and a coupling stage. First, we will prove that
after t1 = O(log n) time-steps there is a linear number
of informed vertices which have not informed any other
vertex yet. Then, we will (roughly) show that an un-

informed vertex at some time t2 implies a logarithmic
number of uninformed vertices O(log n) steps before t2.
In the final coupling stage we will prove that it is very
likely that within a single step one of the linear many
informed vertices contacts one of the logarithmic many
uninformed vertices.

Forward Approximation: Let u know some rumor
at time-step 0. We consider phases of several steps. Let
t denote the current phase (and not the time-step). Let
It be the set of large vertices informed after the t-th
phase. Let Nt ⊆ It \ It−1 be the set of newly informed
large vertices which have got the rumor from vertices in
Nt−1 in the (t − 1)-th phase.

First, we show that after at most two phases there
are at least 100 logn large vertices informed w. h. p.
If u is small, within a single step we inform a large
vertex. Hence, assume w. l. o. g. deg(u) ≥ αD(n). For
dense random graphs and sufficiently large n we have
deg(u) > 100 logn and just do 100 logn + 1 steps in
which 100 logn + 1 neighbors of u get informed. This
implies |N1| = 100 logn w. p. 1 − o(1).

For sparse random graphs we have D(n) =
O(log n). There, a first phase of βD(n) steps informs
all neighbors of u. In a second phase of βD(n) steps,
all vertices within distance ≤ 2 from u get informed.
It remains to show that at least 100 logn different large
vertices got informed w. h. p. The probability that while
≥ (βD(n) − 1)2 = Θ(log2 n) times vertices received the
rumor from a large vertex, only 100 logn different large
vertices were informed is

(

n

100 logn

) (

100 logn

n − 1

)Ω(log2 n)

≤ n100 log n

(

100 logn

n − 1

)Ω(log2 n)

≤ n−2.

Therefore, |N2| > 100 logn w. h. p.
We now assume to have informed |N2| > 100 logn

large vertices. The following phases last 5 steps each. In
each phase every vertex of Nt contacts at least 4 large
vertices of Nt+1. The probability that a vertex in Nt+1

is hit by more than one vertex of Nt within one phase
is at most 5|Nt|/(n − 1). This implies for |Nt| ≤ n/30
and |It| ≤ n/15,

E [|Nt+1|] ≥ 4|Nt|

(

1 −
5|Nt|

n

) (

1 −
1

15

)

> 3|Nt|.

The random variable |Nt+1| depends on the independent
choices of the initially contacted neighbors of Nt and on
the states of the 5 different chosen neighbors (informed
or not informed). We number the vertices of Nt

by 1, . . . , |Nt| and denote by Yi the random variable
exposing the 5 transmissions of vertex i ∈ [1, |Nt|].
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Then, Zi := E
[

|Nt+1(Y1, . . . , Y|Nt|)| | Y1, . . . , Yi−1

]

is a Doob martingale [18] which exposes the random
variable |Nt+1| step by step. In particular we have
E [Z0] = E [|Nt+1|]. Furthermore observe that |Zi −
Zi−1| ≤ 5 (conditioned on Y1, . . . , Yi−2) for every i ∈
[1, |Nt|], since every vertex of Nt+1 sends the rumor to
5 neighbors and the choices of the initially contacted
neighbors are independent from each other. Inserting
our findings into Azuma-Hoeffding’s Inequality [18]
yields

Pr [|Nt+1| < 2|Nt|] ≤ exp

(

−
|Nt|2

50|Nt|

)

≤ n−2,

since |Nt| ≥ 100 logn.
This implies that w. h. p. there is a time t1 =

Θ(log n) with |Nt1 | ≥ n/30.
Backward Approximation: We now analyse the

propagation of the rumor in the reverse order. We will
show that in order to keep a vertex w uninformed till
some time t2 = Θ(log n), w. h. p. there must be at least
40 logn uninformed vertices at time-step t2 −O(log n).

First, we examine dense random graphs. We show
that there are w. h. p. at least 40 logn vertices which
contact w within the time-interval (t2 − 80 β

α log n, t2].
The time until a fixed neighbor x ∈ N(w) contacts the
vertex w can be assumed to be uniformly distributed
in [1, deg(x)] due to the “ever rolling lists”. We bound
the probability that a particular neighbor x ∈ N(w)
contacts w in the time-interval (t2 − 80 β

α log n, t2]. As

we have 80 β
α log n < αD(n) ≤ deg(x), this probability

is
80 β

α log n

deg(x)
≥

80 β
α log n

βD(n)
.

Since there are at least αD(n) such neighbors, the
expected number of successful neighbors is at least

80 β
α log n

βD(n)
αD(n) ≥ 80 logn.

Let X be random variable describing the number of
successful neighbors. We get by a Chernoff bound [18]

Pr [X ≤ 40 logn] ≤ e−80 log n/8 ≤ n−2.

It remains to examine sparse random graphs. If
w is a small vertex, it must be contacted by a large
vertex within βD(n) time-steps. Hence we assume
w. l. o. g. that w is large. Within βD(n) steps, all
x ∈ N(w) must have contacted w at least once. At
least αD(n) − 1 of them are large. Within additional
βD(n) steps, all y ∈ N(N(w)) must have contacted a
x ∈ N(w). Therefore, at time t2 − 2βD(n) all vertices
with distance 2 from w must be uninformed in order

to keep w uninformed at time-step t2. As this is a set
of size Ω(log2 n) w. p. 1 − o(1), there are at least such
40 logn uninformed vertices at time t2 − 2βD(n).

Coupling: From the forward approximation we
know that at some time t1 there are ≥ n/30 newly
informed vertices w. h. p. On the other hand, the
backward approximation showed that if some vertex v
remains uninformed till time-step t2 = Θ(log n), there
must be ≥ 40 logn uninformed vertices at some time
t2 −O(log n). The probability that none of the ≥ n/30
newly informed vertices informs any of the ≥ 40 logn
uninformed vertices around v within a single step after
time t1 is

<

(

1 −
40 logn

n − 1

)n/30

< exp(− 40
30 log n) = n−4/3.

Therefore, by a union bound all vertices are informed
after O(log n) steps w. p. 1 − o(1). !

6 Conclusion

In this paper, we proposed and investigated a quasiran-
dom analogue of the classical push model for spreading
a rumor to all vertices of a network.

We showed that for the network topologies of com-
plete graphs, hypercubes and random graphs G(n, p),
where p only needs to be slightly larger than the connec-
tivity threshold, after Θ(log n) iterations all vertices are
informed with probability 1−o(1). Hence the quasiran-
dom model achieves asymptotically the same bounds as
the random one, or even better ones (for random graphs
with p close to log(n)/n).

From the methodological point of view, this work is
also interesting. Our proofs show, in particular, that the
difficulties usually invoked by highly dependent random
experiments can be overcome.

From the general perspective of using randomized
methods in computer science, our results, as a number
of other recent results, can be interpreted in the way
that choosing the right dose of randomness might be a
fruitful topic for further research.

7 Acknowledgements

We are thankful to the reviewers for helpful comments
improving the quality of this paper. Moreover we wish
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