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ABSTRACT

The rules governing the availability and quality of connec-
tions in a wireless network are described by physical mod-
els such as the signal-to-interference & noise ratio (SINR)
model. For a collection of simultaneously transmitting sta-
tions in the plane, it is possible to identify a reception zone
for each station, consisting of the points where its trans-
mission is received correctly. The resulting SINR diagram
partitions the plane into a reception zone per station and
the remaining plane where no station can be heard.

SINR diagrams appear to be fundamental to understand-
ing the behavior of wireless networks, and may play a key
role in the development of suitable algorithms for such net-
works, analogous perhaps to the role played by Voronoi di-
agrams in the study of proximity queries and related is-
sues in computational geometry. So far, however, the prop-
erties of SINR diagrams have not been studied systemat-
ically, and most algorithmic studies in wireless network-
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ing rely on simplified graph-based models such as the unit
disk graph (UDG) model, which conveniently abstract away
interference-related complications, and make it easier to han-
dle algorithmic issues, but consequently fail to capture ac-
curately some important aspects of wireless networks.

The current paper focuses on obtaining some basic un-
derstanding of SINR diagrams, their properties and their
usability in algorithmic applications. Specifically, based on
some algebraic properties of the polynomials defining the re-
ception zones we show that assuming uniform power trans-
missions, the reception zones are convex and relatively well-
rounded. These results are then used to develop an efficient
approximation algorithm for a fundamental point location
problem in wireless networks.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations

General Terms
Algorithms
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1. INTRODUCTION

Background. Wireless networks are hard to represent
faithfully, due to the fact that deciding whether a transmis-
sion by a station s is successfully received by another station
s’ is nontrivial, and depends on the positioning and activ-
ities of s, s’, and nearby stations that might interfere with



the transmission and prevent its successful reception. Thus
such a transmission from s may reach s’ under certain cir-
cumstances but fail to reach it under other circumstances.
Moreover, the question is not entirely “binary”, in the sense
that connections can be of varying quality and capacity.

The rules governing the availability and quality of wireless
connections can be described by physical or fading channel
models (cf. [14, 4, 15]). Among those, the most commonly
studied is the signal-to-interference & noise ratio (SINR)
model. In the SINR model, the energy of a signal fades
with the distance to the power of the path-loss parameter
a. If the signal strength received by a device divided by
the interfering strength of other simultaneous transmissions
(plus the fixed background noise N) is above some reception
threshold 3, then the receiver successfully receives the mes-
sage, otherwise it does not. Formally, denote by dist(p, q)
the Euclidean distance between p and ¢, and assume that
each station s; transmits with power ¥;. (A uniform power
network is one where all stations transmit with the same
power.) At an arbitrary point p, the transmission of station
si is correctly received if

Y - dist(p, si)
N+ Zj;&i ;- dist(p, s;) =

Hence for a collection S = {so, ..., $n—1} of simultaneously
transmitting stations in the plane, it is possible to identify
with each station s; a reception zone H; consisting of the
points where the transmission of s; is received correctly. It is
believed that the path-loss parameter 2 < a < 4, where a =
2 is the common “textbook” choice, and that the reception
threshold 8 ~ 6 (3 is always assumed to be greater than 1).

To illustrate how reception depends on the locations and
activities of other stations, consider (the numerically gener-
ated) Fig. 1. Fig. 1(A) depicts uniform stations s1, s2, s3 and
their reception zones. Point p (represented as a solid black
square) falls inside Hz. Fig. 1(B) depicts the same stations
except station s; has moved, so that now p does not receive
any transmission. Fig. 1(C) depicts the stations in the same
positions as Fig. 1(B), but now s3 is silent, and as a result,
the other two stations have larger reception zones, and p
receives the message of s;.

Fig. 1 illustrates a concept central to this paper, namely,
the SINR diagram. An SINR diagram is a “reception map”
characterizing the reception zones of the stations, namely,
partitioning the plane into n reception zones H;, 0 < i <
n—1, and a zone Hy where no station can be heard. In many
scenarios the diagram changes dynamically with time, as the
stations may choose to transmit or keep silent, adjust their
transmission power level, or even change their location from
time to time.

Notice that for the locations in which the stations them-
selves are positioned, the SINR diagram is meaningless since
it follows from the definition that station s; cannot receive
the transmission of any station s;, j # ¢ (unless the two sta-
tions coincide). However, SINR diagrams can be extremely
useful for a listening device that does not belong to S and is
located in an arbitrary point in the plane. Using the SINR
diagram, it is possible to decide which of the station of S (if
any) can be correctly received in the location of the listening
device.

It is our belief that SINR diagrams are fundamental to un-
derstanding the dynamics of wireless networks, and will play
a key role in the development of suitable (sequential or dis-
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tributed) algorithms for such networks, analogous perhaps
to the role played by Voronoi diagrams in the study of prox-
imity queries and related issues in computational geometry.
Yet, to the best of our knowledge, SINR diagrams have not
been studied systematically so far, from either geometric,
combinatorial, or algorithmic standpoints. In particular, in
the SINR model it is not clear what shapes the reception
zones may take, and it is not easy to construct an SINR
diagram even in a static setting.

Taking a broader perspective, a closely related concern
motivating this paper is that while a fair amount of research
exists on the SINR model and other variants of the physical
model, little has been done in such models in the algorithmic
arena. (Some recent exceptions are [8, 9, 10, 11, 12, 13,
16].) The main reason for this is that SINR models are
complex and hard to work with. In these models it is even
hard to decide some of the most elementary questions on a
given setting, and it is definitely more difficult to develop
communication or design protocols, prove their correctness
and analyze their efficiency.

Subsequently, most studies of higher-layer concepts in
wireless multi-hop networking rely on simplified graph-based
models rather than on the SINR model. In particular, the
model of choice for many protocol designers is the unit disk
graph (UDG) model [6]. In this model, also known as the
protocol model [9], two stations are considered to be neigh-
bors if their Euclidean distance is at most 1. This defines
the UDG graph. A silent station s successfully receives the
message of a transmitting station s’ if s’ is a neighbor of s
and no other neighbor of s transmits concurrently.

Graph-based models are attractive for higher-layer proto-
col design, as they conveniently abstract away interference-
related complications. Issues of topology control, scheduling
and allocation are also handled more directly, since notions
such as adjacency and overlap are easier to define and test,
in turn making it simpler to employ also some useful derived
concepts such as domination, independence, clusters, and so
on. On the down side, it should be realized that graph-based
models, and in particular the UDG model, ignore or do not
accurately capture a number of important physical aspects
of real wireless networks. In particular, such models over-
simplify the physical laws of interference; in reality, several
nodes slightly outside the reception range of a receiver sta-
tion v (which consequently are not adjacent to v in the UDG
graph) might still generate enough cumulative interference
to prevent v from successfully receiving a message from a
sender station adjacent to it in the UDG graph. Hence the
UDG model might yield a “false positive” indication of re-
ception. Conversely, a simultaneous transmission by two or
more neighbors should not always end in collision and loss of
the message; in reality this depends on other factors, such as
the relative distances and the relative strength of the trans-
missions. Hence in this case the UDG model yields a “false
negative” indication.

In summary, while the existing body of literature on mod-
els and algorithms for wireless networks represents a signifi-
cant base containing a rich collection of tools and techniques,
the state of affairs described above leaves us in the unfortu-
nate situation where the more practical graph-based models
(such as the UDG model) are not sufficiently accurate, and
the more accurate SINR model is not well-understood and
therefore difficult for protocol designers. Hence obtaining a
better understanding of the SINR model, and consequently
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Figure 1: An example of SINR diagram with three transmitters si,s2,s3 and one receiver denoted by the
solid black square. (A) The receiver can hear s;. (B) Station s; moves and now the receiver cannot hear any
transmission. (C) If, at the same locations as in (B), s3 is silent, then the receiver can hear s;.

bridging the gap between this physical model and the graph
based models may have potentially significant (theoretical
and practical) implications. This goal is the central motiva-
tion behind the current paper.

Related work. Some recent studies aim at achiev-
ing a better understanding of the SINR model. In their
seminal work [9], Gupta and Kumar analyzed the capacity
of wireless networks in the physical and protocol models.
Moscibroda [11] analyzed the worst-case capacity of wire-
less networks, making no assumptions on the deployment of
nodes in the plane, as opposed to almost all the previous
work on this problem.

Thought provoking experimental results presented in [12]
show that even basic wireless stations can achieve commu-
nication patterns that are impossible in graph-based mod-
els. Moreover, the paper presents certain situations in which
it is possible to apply routing / transport schemes that
may break the theoretical throughput limits of any protocol
which obeys the laws of a graph-based model.

Another line of research, in which known results from the
UDG model are analyzed under the SINR model, includes
[13], which studies the problem of topology control in the
SINR model, and [8], where impossibility results were proved
in the SINR model for scheduling.

More elaborate graph-based models may employ two sep-
arate graphs, a connectivity graph G. = (S, E.) and an in-
terference graph G; = (S, E;), such that a station s will suc-
cessfully receive a message transmitted by a station s’ if and
only if s and s’ are neighbors in the connectivity graph G.
and s does not have a concurrently transmitting neighbor in
the interference graph G;. Protocol designers often consider
special cases of this more general model. For example, it is
sometimes assumed that G; is G. augmented with all edges
between 2-hop neighbors in G.. Similarly, a variant of the
UDG model handling transmissions and interference sepa-
rately, named the Quasi Unit Disk Graph (Q-UDG) model,
was introduced in [10]. In this model, two concentric circles
are associated with each station, the smaller representing its
reception zone and the larger representing its area of inter-
ference. An alternative interference model, also based on
the UDG model, is proposed in [16].

Our results. A fundamental issue in wireless network
modeling involves characterizing the reception zones of the
stations and constructing the reception diagram. The cur-
rent paper aims at gaining a better understanding of this is-

sue in the SINR model, and as a consequence, deriving some
algorithmic results. In particular, we consider the structure
of reception zones in SINR diagrams corresponding to uni-
form power networks in d dimensional space (d > 2) with
path-loss parameter o > 0 and examine two specific prop-
erties of interest, namely, the convezity and fatness' of the
reception zones. Apart from their theoretical interest, these
properties are also of considerable practical significance, as
obviously, having reception zones that are non-convex, or
whose shape is arbitrarily skewed, twisted or skinny, might
complicate the development of protocols for various design
and communication tasks.

Our first result, which turns out to be surprisingly less
trivial than we may have expected, is cast in Theorem 1.
This theorem is proved in Section 3 for the central special
case of d = 2 and a = 2, by a complex analysis of the
polynomials defining the reception zones, based on combin-
ing several observations with Sturm’s condition for counting
real roots. Proof of the general statement of the theorem is
deferred to the full paper due to space considerations.

THEOREM 1. The reception zones in an SINR diagram
of a uniform power network in d dimensional space (d > 2)
with path-loss parameter a > 0 and reception threshold B > 1
are convet.

Note that our convexity proof still holds when 8 = 1. In
contrast, when 3 < 1, the reception zones of a uniform power
network are not necessarily convex. This phenomenon is il-
lustrated in (the numerically generated) Fig. 2. We then
establish an additional attractive property of the reception
zones (also proved in Section 3), which in a certain sense
lends support to the model of Quasi Unit Disk Graphs sug-
gested by Kuhn et al. in [10].

THEOREM 2. The reception zones in an SINR diagram of
a uniform power network with path-loss parameter o = 2
and reception threshold B > 1 are fat.

'The notion of fatness has received a number of non-
equivalent technical definitions, all aiming at capturing the
same intuition, namely, absence of long, skinny or twisted
parts. In this paper we say that the reception zone of sta-
tion s; is fat if the ratio between the radii of the smallest
ball centered at s; that completely contains the zone and
the largest ball centered at s; that is completely contained
by it is bounded by some constant. Refer to Section 2 for a
formal definition.



.

Figure 2: A uniform power network with path-loss
parameter o = 2, reception threshold 5 = 0.3, and
background noise N = 0.05. The reception zones are
clearly non-convex.

Armed with this characterization of the reception zones,
we turn to a basic algorithmic task closely related to SINR
diagrams, namely, answering point location queries. We ad-
dress the following natural question: given a point in the
plane, which reception zone contains this point (if any)?
For UDG, this problem can be dealt with using known tech-
niques (cf. [1, 2]). For arbitrary (non-unit) disk graphs,
the problem is already harder, as the direct reduction to
the technique of [2] no longer works. In the SINR model
the problem becomes even harder. A naive solution will re-
quire computing the signal to interference & noise ratio for
each station, yielding time O(n?). A more efficient (O(n)
time) querying algorithm can be based, for example, on the
observation that there is a unique candidate s; € S whose
transmission may be received at p, namely, the one whose
Voronoi cell contains p in the Voronoi diagram defined for
S. However, it is not known if a sublinear query time can be
obtained. This problem can in fact be thought of as part of
a more general one, namely, point location over a general set
of objects defined by polynomials and satisfying some “nice-
ness” properties. Previous work on the problem dealt with
Tarski cells, namely, objects whose boundaries are defined
by a constant number of polynomials of constant degree [5,
1]. In contrast, the SINR diagram consists of objects (the re-
ception zones) whose boundaries are defined by polynomials
of degree proportional to n. We are unaware of a technique
that answers point location queries for such objects in sub-
linear time.

Consider the SINR diagram of a uniform power network
with path-loss parameter o = 2 and reception threshold
B > 1 and fix some performance parameter 0 < ¢ < 1. The
following theorem is proved in Section 4 (refer to Fig. 3 for
illustration).

THEOREM 3. A data structure DS of size O(ne™ 1) is con-
structed in O(n‘q’e*l) preprocessing time. This data struc-
ture essentially partitions the Fuclidean plane into disjoint
zones R? = ' HF UH™ UUIZ, ML such that for every
0<i<n-—1:

(2) H- NH; =0; and

(3) H! is bounded and its area is at most an e-fraction of
the area of H;.

On a query point p € R?, DS identifies the zone in {H; }7- U
{H™YU{H}"=} to which p belongs, in time O(logn).
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Figure 3: The reception zones H; (enclosed by the
bold lines) and the partition of the plane to disjoint
zones H; (dark gray), H! (light gray), and H~ (the
remaining white).

Open problems. Our results concern wireless net-
works with uniform power transmissions. General wireless
networks are harder to deal with. For instance, the point
location problem becomes considerably more difficult when
different stations are allowed to use different transmission
energy, since in this case, the appropriate graph-based model
is no longer a unit-disk graph but a (directed) general disk
graph, based on disks of arbitrary radii. An even more in-
teresting case is the wvariable power setting, where the sta-
tions can adjust their transmission energy levels from time
to time.

The problems discussed above become harder in a dy-
namic setting, and in particular, if we assume the stations
are mobile, and extending our approach to the dynamic and
mobile settings are the natural next steps.

2. PRELIMINARIES

Geometric notions. In the Euclidean plane RZ
the distance between points p, q is denoted by dist(p,q) =
dist(q,p) = |l¢g — pl|- A ball of radius r centered at point p
is the set of all points at distance at most r from p, denoted
by B(p,r) = {q € R? | dist(p,q) < r}. Point p € R? is
internal to the point set P if there exists some € > 0 such
that B(p,e) C P.

Consider some point set P. P is said to be an open set if
all points p € P are internal points. P is said to be a closed
set if the complement of P is an open set. If there exists
some real r such that dist(p,q) < r for every two points
p,q € P, then P is said to be bounded. A compact set is a
set which is both closed and bounded. The closure of P is
the smallest closed set containing P. The boundary of P,
denoted by 0P, is the intersection of the closure of P and
the closure of its complement. A connected set is a point set
that cannot be partitioned to two non-empty subsets such
that each of the subsets has no point in common with the
closure of the other. We refer to the closure of an open
bounded connected set as a thick set. By definition, every
thick set is compact.

A point set P is said to be convez if the segment pgq is
contained in P for every two points p,q € P. The point set
P is said to be star-shaped [7] with respect to point p € P
if the segment pq is contained in P for every point ¢ € P.
Note that a convex point set P is star-shaped with respect
to any point p € P; the converse is not necessarily true.



Figure 4: The zone Z (enclosed by the solid line)
with the ball defining §(p, Z) (dotted line) and the
ball defining A(p, Z) (dashed line).

LEMMA 1. A thick set P is convez if and only if every
line intersects OP at most twice.

We frequently use the term zone to describe a point set
with some “niceness” properties. Unless stated otherwise, a
zone refers to the union of an open connected set and some
subset of its boundary. (A thick set is a special case of a
zone.) It may also refer to a single point or to the finite
union of zones. Given some bounded zone Z, we denote
the area and perimeter of Z (assuming that they are well
defined) by area(Z) and per(Z), respectively. Let Z be a
non-empty bounded zone and let p be some internal point
of Z. Denote

0(p, Z) =sup{r >0|Z 2 B(p,r)}
A(p,Z) =inf{r >0| Z C B(p,r)}

and define the fatness parameter of Z with respect to p to
be the ratio of A(p,Z) and §(p, Z), denoted by ¢(p, Z) =
A(p,Z)/6(p, Z). (See Fig. 4.) The zone Z is fat w.r.t. p if
»(p, Z) < ¢ for some constant ¢ > 0.

The separation line of two points p; and p2 in the plane
is the set of points {q | dist(p1, q) = dist(p2,q)}.

Wireless networks. We consider a wireless network
A = (S,9,N,3), where S = {s0,81,...,8,—1} Is a set
of transmitting radio stations embedded in the Euclidean
plane, 1 is an assignment of a positive real transmitting
power 1; to each station s;, N > 0 is the background noise,
and B > 1 is a constant that serves as the reception threshold
(will be explained soon). For the sake of notational simplic-
ity, s; also refers to the point (as,b;) in the plane where the
station s; resides. The network is assumed to contain at
least two stations, i.e., n > 2. We say that A is a uniform
power network (UPN) if ¢ = 1, namely, if ¢; = 1 for every
i.

The energy of station s; at point p # s; is defined to be
Ea(si,p) = s - dist(s;,p) 2. The energy of a station set
T C S at point p, where p # s; for every i € T, is defined
to be Ea(T,p) = > ,cr Ea(si,p). Fix some station s; and
consider some point p ¢ S. We define the interference to
si at point p to be the energies at p of all stations other
than s;, denoted I4(s;,p) = Ea(S — {s:},p). The signal to
interference € noise ratio (SINR) of s; at point p is defined

as

Ea(si,p
SINRA(si,p) :W (1)
_ i - dist (si, p)
Dy - dist(sj,p) "2+ N

Observe that SINR 4(s;, p) is always positive since the trans-
mitting powers and the distances of the stations from p are
always positive and the background noise is non-negative.
When the network A is clear from the context, we may omit
it and write simply E(s;, p), I(s:,p), and SINR(s;, p).

The fundamental rule of the SINR model is that the trans-
mission of station s; is received correctly at point p ¢ S if
and only if its SINR at p is not smaller than the reception
threshold of the network, i.e., SINR(s;,p) > (. If this is
the case, then we say that s; is heard at p. We refer to the
set of points that hear station s; as the reception zone of s;,
defined (somewhat tediously) as

Hi={p € R®>— S | SINR(s;,p) > B} U {si} .

(This definition is necessary as SINR(s;, -) is not defined at
any point in S and in particular, at s; itself.)

Consider station so and an arbitrary point p = (z,y) € R?.
By rearranging the expression in (1), we correlate the funda-
mental rule of the SINR model to the 2-variate polynomial
H(z,y) s.t. so is heard at p iff

H(w,y) = 8] wi-T] ((a; = @) + (b5 — v)°)

i>0 G

+ N T (@ =2 + (b= )?) |

*¢0'H((ai*fv)2+(bz‘*y)2) <0.

i>0

Note that this condition holds even for points p € S. Con-
sequently, we can rewrite Ho = {(z,y) € R?* | H(x,y) < 0},
where the boundary points of Ho are exactly the roots of
H(z,y). In general, the polynomial H(z,y) has degree 2n;
the degree is 2n — 2 if the background noise N = 0. This
polynomial plays a key role in the analysis carried out in
Section 3.2.

AUPN A = (S,1, N, ) is said to be trivial if | S| = 2, N =
0, and 8 = 1. Note that for ¢ = 0, 1, the reception zone H; of
station s; in a trivial UPN is the half-plane consisting of all
points whose distance to s; is not greater than their distance
to s1—;. In particular, H; is unbounded. For non-trivial
networks, we have the following observation that relies on
the fact that SINR(s;, -) is a continuous function in R? — §.

OBSERVATION 1. Let A = (S,1,N,3) be a non-trivial
UPN. Then the reception zone H; is compact for every s; €
S. Moreover, every point in H; is closer to s; than it is to
any other station in S (i.e., H; is strictly contained in the
Voronoi cell of s; in the Voronoi diagram of S).

LEMMA 2. Let f : R? — R? be a mapping consisting
of rotation, translation, and scaling by a factor of o > 0.
Consider some network A = (S,v¥,N,3) and let f(A) =

(f(8),4,N/o? B), where f(S) = {f(si) | ss € S}. Then

for every station s; and for all points p ¢ S, we have
SINRa(si,p) = SINRja)(f(si), f(p))-



3. CONVEXITY AND FATNESS OF THE
RECEPTION ZONES

In this section we consider the SINR diagram of a uniform
power network A = (5,1, N, 3) and establish Theorems 1
and 2 for the special case of d = 2 and o = 2. As all stations
admit the same transmitting power, it is sufficient to focus
on sp and to prove that the reception zone Hy is convex and
fat. The fatness property is established in Section 3.4. For
the convexity proof, we consider some arbitrary two points
p1,p2 € R? and argue that if sy is heard at p; for i = 1,2,
then sp is heard at all points in the segment pipz. This
argument is established in three steps.

First, as a warmup, we prove that Hy is star-shaped with
respect to sp. This proof, presented in Section 3.1, estab-
lishes our argument for the case that p1 and p2 are colinear
with sp. Next, we prove that in the absence of a back-
ground noise (i.e., N = 0), if p; € Ho for ¢ = 1,2, then
Pp1p2 € Ho. This proof, presented in Section 3.3, relies
on the analysis of a special case of a network consisting of
only three stations which is analyzed in Section 3.2 and in a
sense, constitutes the main technical challenge of this paper.
Finally, we reduce the convexity proof of a UPN with n sta-
tions and arbitrary background noise, to that of a UPN with
n + 1 stations and no background noise. This reduction is
omitted from this extended abstract. While the analysis in
Section 3.3 is consistent with some “physical intuition”, the
proof presented in Section 3.2 is based purely on algebraic
arguments.

3.1 Star-shape

In this section we consider a UPN A = (5,1, N, 3) and
show that the reception zone Hy is star-shaped w.r.t. the
station sp. In fact, we establish the following slightly
stronger lemma, whose proof is omitted from this extended
abstract.

LeMMA 3. Consider some point p € R?. If SINR(sp,p) >
1, then SINR(so,q) > SINR(so,p) for all internal points q
in the segment so p.

Consider a non-trivial UPN A = (S, 1, N, 3) and suppose
that sop # s; for every j > 0, i.e., the location of sy is not
shared by other stations. Lemma 3 implies that the point
set Hy = {p € R? — S | SINR(s0,p) > B} U {so} is star-
shaped w.r.t. sp, and in particular, connected. Moreover,
since SINR is a continuous function in R? — S, it follows
that H{ is an open set. As Ho is the closure of H{,, we have
the following.

COROLLARY 1. In a nontrivial network, if so’s location is
not shared by other stations, then Ho is a thick set.

3.2 Three stations with no background noise

In this section we analyze the special case of the UPN
As = (S,1,N,8), where S = {s0, 51,8}, N=0,and 8= 1.
Our goal is to establish the following lemma, which consti-
tutes the main technical challenge in the course of proving
Theorem 1.

LEMMA 4. The reception zone Ho of station sy in As is
convetr.

Lemma 4 clearly holds if s; = so for some j € {1,2},
as this implies that Ho = {so}. So, in what follows we

assume that no other station shares the location of sy. By
Corollary 1 we know that Hp is a thick set. Lemma 1 can
now be employed to establish Lemma 4. To do that, it
is required to show that every line intersects 0Ho at most
twice.

Consider an arbitrary line L in R%. We claim that L and
OHo have no more than two intersection points. If sy €
L, then the claim holds due to Lemma 3. Hence in the
remainder of this section, assume that sp ¢ L. Recall (see
Section 2) that point (z,y) € R? is on the boundary of Ho
iff it is a root of the polynomial H(z,y) = ((ao — )% + (bo —
¥)*) (a1~ 2)* + (b1 —y)* + (a2 —2)* + (b2 —y)*) — (a1 —2)* +
(b1 — v)?) (a2 — x)* + (b2 — y)?) so it is sufficient to prove
that the projection of H(z,y) on the line L has at most two
distinct real roots.

Employing Lemma 2, we may assume that sp is located
at the origin and that L is the line y = 1. By substituting
y = 1 into the expression of H(z,y) and rearranging the
resulting expression, we get

H(z) =

(x2 + 1) ((a1 — x)2 + (b1 — 1)2 + (a2 — x)2 + (b2 — 1)2)
- ((a1 — z)° + (b — 1)2) ((az — x)° 4 (by — 1)2) =

' + (2 — 4a1a0)2?

+ (2a2a§ + 2a§a1 +2(1 — b2)2a1

— 2a1 + 2a2(1 — b1)? — 2a0)x

+af —afas + a5 —a3(1— b))’ + (1 —b1)®
—aj(l—b2)® = (1= b1)*(1 = b2)” + (1 —b2)*

so that (z,1) is on the boundary of Ho if and only if z is a
root of H(x).

Our goal in the remainder of this section is to show that
H(x) has at most two distinct real roots, and towards this
goal we will first invest some effort in simplifying this poly-
nomial. As a first step we show that we can restrict our
attention to the case where both s; and s» are in the first
quarter above the line y = 1, that is, a;j > 0 and b; > 1
for j = 1,2. The latter restriction is trivial due to the sym-
metry of interference along the line y = 1, which implies
that if b; < 1 for some j € {1,2}, then relocating s; in
(aj, 1+ |1 — b;]) does not affect the interference at ¢ for all
points ¢ on the line y = 1, and in particular, does not affect
the number of simple real roots of H(z). For the former re-
striction we establish the following proposition whose proof
is omitted from this extended abstract.

PROPOSITION 1. Ifsign(aq1)-sign(az) # 1, then H(x) has
at most two distinct real roots.

By Proposition 1, we may hereafter assume that
sign(a1) = sign(az) # 0. The case where a; < 0 for j = 1,2
is redundant, since relocating station s; in (—aj,b;) turns
H(z) into H(—z), and in particular, does not affect the num-
ber of distinct real roots of the polynomial. Therefore, in
what follows we assume that a; > 0 and b; > 1 for j =1, 2.
Our next step is to rewrite H(z) as

H(z) = (¢ +1)* = J(2) , )

where J(z) = dasarz® — (20,2(1% + 2a2a1 + 2b2aq, — 4boa1 +
2a2b} — dashy )z + ajal +b3a? — 2b2a? + a3bi + bib3 — 2b1b3 —
2a§b1 — Zb%bg + 4b1by is a polynomial of degree 2. Under



Figure 5: The point (r;,1) is on the separation line
L; of sp and s;.

the assumption that a1 and a2 are positive, J(z) has the
following (not necessarily distinct) real roots:
ry = M and ry = M )
2a1 2a2

Perhaps surprisingly, the root r; corresponds to the x-
coordinate of the intersection point of the line ¥y = 1 and
the separation line L; of sp and s; for j = 1,2 (see Fig. 5).
To validate this observation, note that the point (x,y) is on
L; if and only if (z — a;)* + (y — b;)? = 2 + ¥, or equiva-
lently, if and only if a} + b7 = 2(a;z + b;y). Fixing y = 1,

24 (bj—2)b;
Wegetthatxziaiﬂj )J*r

2a; =15
J
Moreover, since x has a negative coefficient when L; is
a;j 2 2
expressed as y = —32x + aj + b, we conclude that the
J

point (z',1) is as close to s; at least as it is to sp for all
x' > rj. The next corollary follows since the real roots of
H(x) correspond to points on the boundary of Ho, and since
so is heard at all such points.

COROLLARY 2. The real z' is not a root of the polynomial
H(z) for any ' > min{ry,r2}.

Incidentally, let us comment without proof that the point
min{ri, 2} is the intersection point of the line y = 1 and the
boundary of the Voronoi cell of sy in the Voronoi diagram
of S.

Fix 7 = (r1 4+ 72)/2 and define the shifted variable z =
x — 7. Since 7 is the center of the parabola J(x), it follows
that when expressing J(z) in terms of the shifted variable z,
we get the form J(z) = y22+6, where v > 0 since the leading
coefficient of J(z) is positive, and 6 < 0 since J(x) has at
least one real root. We can now express H (), as represented
in (2), in terms of the shifted variable z, introducing the
polynomial

H(z) = ((z+7")2+1)2—’yz2—6,

which is obviously much simpler. Clearly, H(z) and H(z)
have the same number of distinct real roots.

In what follows, we employ Sturm’s Theorem in order to
bound the number of distinct real roots of H(z). Consider
some degree n polynomial P(x) = apz™+- - -+a1z+ap over
the reals. The Sturm sequence of P(x) is a sequence of poly-
nomials denoted by Py(z), Pi(z), ..., Pm(x), where Py(z) =

P(z), Pi(z) = P'(z), and Pi(z) = —trem(P;_2(z)/P;i—1(x))
for ¢ > 1. This recursive definition terminates at step m
such that —rem(Pp,—1(x)/Pm(z)) = 0. Since the degree of
Pi(z) is at most n — 4, we conclude that m < n. Define
SCp(t) to be the number of sign changes in the sequence
Py(t), Pi(t), ..., Pm(t). We are now ready to state the fol-
lowing theorem attributed to Jacques Sturm, 1829 (cf. [3]).

THEOREM 4  (STURM’S CONDITION). Consider two re-
als a,b, where a < b and neither of them is a root of P(x).

Then the number of distinct real Toots of P(x) in the interval
(a,b) is SCp(a) — SCp(b).

We will soon show that? SCz(—oc) < 3 and SCz (00) > 1,
hence SCg(—00) —SCg(00) < 2. Therefore, by Theorem 4,
we conclude that E’(z) has at most two distinct real roots.
It is sufficient for our purposes to consider the first three
polynomials in the Sturm sequence of ﬁ(z)

Ho(2) =2* + 472° + (672 — v + 2)2° + (47° + 47)z + 7
+27 —6+1

Hi(2) =42° +1272° + 2 (67° — v + 2) z + 47° + 47

Ho(z) =(7/2 = 1)2° = 7(24+~/2)z — 7 — 1+ .

PROPOSITION 2. The  polynomial — H(z)  satisfies

SCp(00) > 1.

PROOF. We first argue that H(z) does not have any root
in the interval [0,00). This argument holds due to Corol-
lary 2 since by the definition of z = = — 7, z > 0 implies
x > 7 > min{ri,r2}. Therefore Theorem 4 guarantees that
SCz(00) = SCx(0). Now, the sign of Hy(0) is positive while
the sign of ﬁlg(()) is negative, so there must be at least one

sign change when the Sturm sequence of H (%) is evaluated
on 0, hence SCy(00) =SC;(0) > 1. O

ProPOSITION 3. The
SCq(—o00) < 3.

Proor. First note that there are at most five polynomi-
als in the Sturm sequence of H(z), hence SCg(—00) can-

not be greater than 4. Suppose, towards deriving contra-
diction, that SCz(—oc0) = 4. This implies that there are
exactly 5 polynomials in the Sturm sequence of IA{(z) and
the degree of I/:Il(z) is 4 — i for every 0 < ¢ < 4. Clearly,
both SCg(—o0) and SCg(00) depend solely on the signs of
the leading coefficients of the polynomials in the Sturm se-
quence of H(z). Since sign(Ho(—occ)) = 1, we must have
sign(ﬁfi(—oo)) =—1fori=1,3 and sign(ﬁi(—oo)) =1 for
i = 2,4. As sign(H;(c0)) = sign(H;(—o0)) for i = 0,2,4
and sign(H;(00)) = —sign(H;(—o0)) for i = 1,3, we con-
clude that sign(H;(c0)) = 1 for every 0 < i < 4. Therefore
SCz(00) = 0, in contradiction to Proposition 2. [

polynomial ﬁ(z) satisfies

To conclude, combining Propositions 2 and 3 with Theo-
rem 4, we get that H (%) has at most two distinct real roots,
and thus H(x) has at most two distinct real roots. It fol-
lows that every line has at most two intersection points with
OHo, which completes the proof of Lemma 4.

*We write SCz(00) and SCz(—00) as a convenient short-
hand for lim. ..o SCy(z) and lim. . o SCp(2), respec-
tively.



3.3 Convexity with » stations and no back-
ground noise

We now return to a UPN A = (S,1, N, ) with an ar-
bitrary number of stations and with an arbitrary reception
threshold 8 > 1, but still, with no background noise (i.e.,
N = 0), and establish the convexity of Ho.

LEMMA 5. The reception zone Ho of station so in A is
convez.

Lemma 5 is proved by induction on the number of stations
in the network, n = |S|. For the base of the induction, we
consider the case where n = 2. The theorem clearly holds
if sp and s; share the same location, as this implies that
Ho = {so}. Furthermore, if 3 = 1, which means that A is
trivial, then Hp is a half-plane and in particular, convex. So,
in what follows we assume that sy # s1 and that § > 1.

Corollary 1 implies that Ho is a thick set, thus, by
Lemma 1, it is sufficient to argue that every line L has at
most two intersection points with OHo. If so € L, then the
argument holds due to Lemma 3. If sg ¢ L, then % =7
is essentially a quadratic equation, thus it has at most two
real solutions which correspond to at most two intersection
points of L and 0H.

The inductive step of the proof of Lemma 5 is more in-
volved. We consider some arbitrary two points p1,p2 € Ho
and prove that pr p2 C Ho. Informally, we will show that
if there exist at least two stations other than sp, then we
can discard one station and relocate the rest so that the
interference at p; remains unchanged for ¢ = 1,2 and the
interference at g does not decrease for all points q € p1 p2.
By the inductive hypothesis, the segment p1 p2 is contained
in Ho in the new setting, hence it is also contained in Hp in
the original setting. This idea relies on the following lemma,
whose proof is omitted from this extended abstract.

LEMMA 6. Consider the stations so, 1,2 and some dis-
tinct two points p1,p2 € R%. IfE(so,p:) > E({s1, s2},pi) for
i =1,2, then there exists a location s* € R? such that
(1) E(s*,pi) = E({s1, 82}, pi) fori=1,2; and
(2) E(s*,q) > E({s1, 52}, q), for all points q in the segment
P1Dp2.

We now turn to describe the inductive step in the proof
of Lemma 5. Assume by induction that the assertion of the
theorem holds for n > 2 stations, i.e., that in a UPN with
n > 2 stations and no background noise we have p1 p2 C Ho
for every pi,p2 € Ho. Now consider a UPN A with n + 1
stations sp,..., s, and no background noise. Let pi,p2 €
Ho. Suppose that s; is closest to, say, p1 among all stations
$1y...,8n. Since p1,p2 € Ho, we know that E(sg,pi;) >
E({s1,82},p;) for i = 1,2. Lemma 6 guarantees that there
exists a station location s* € R? such that (1) E(s*,p;) =
E({517 SQ}api) for : = 1,2; and (2) E(S*7Q) > E({817 32},q),
for all points ¢ in the segment p1 p2.

Note that the station location s* must differ from sg.
This is because E(s*,p;) = E({s1, s2},p:) while E(so,p;) >
E({s1, 82}, p:) for i = 1,2, thus dist(s*, p;) > dist(so, p:)-

Consider the n-station UPN A* obtained from A by
replacing s1 and sy with a single station located at
s*. Note that Ia=(so,pi) = ILa(so,pi) for ¢ = 1,2
and Ta=(s0,q) > Ta(so,q) for all points ¢ € pipz,
hence SINR 4+ (so,pi) = SINRa(so,p;) for i = 1,2 and

SINR 4+ (s0,q) < SINR.4(s0,q). By the inductive hypoth-
esis, SINR 4= (s0,q) > [ for all points q € p1pz, therefore
SINR 4(s0,q) > (B and s is heard at ¢ in A. It follows that
every q € p1pz belongs to Hp in A, which establishes the
assertion and completes the proof of Lemma 5.

3.4 The fatness of the reception zones

In this section we develop a deeper understanding of the
“shape” of the reception zones by analyzing their fatness.
Consider a UPN A = (S,1, N, 8), where S = {s0,...,8n—1}
and® B > 11is a constant. We focus on sy and assume that its
location is not shared by any other station (otherwise, the
reception zone Ho = {so}). Theorem 5, whose proof is omit-
ted from this extended abstract, exhibits explicit bounds on
A(s0,Ho) and 6(so, Ho).

THEOREM 5. In a wuniform energy network A =
(S,1,N,B), where S = {so,...,8n—1} and 3 > 1 is a
constant, if the minimum distance from sy to any other
station is k& > 0, then 6(so,Ho) > ——L—=—— and

B(n—1+N-k2)+1
A(So,Ho) <

K
— /BA+N-k2)-1"

These bounds imply that ¢(so, Ho) = O(y/n). In fact, a
slightly more careful analysis (omitted from this extended
abstract as well) shows that ¢(so, Ho) = O(1), thus estab-
lishing Theorem 2.

4. HANDLING APPROXIMATE POINT
LOCATION QUERIES

Our goal in this section is to prove Theorem 3. In fact, our
technique for approximate point location queries is suitable
for a more general framework of zones (and diagrams). Let
Q(z,y) be a 2-variate polynomial of degree m and suppose
that the zone

Q= {(z,y) €eR?| Q(z,y) <0}

is a thick set and that Q(z,y) is strictly negative for all
internal points (z,y) of Q. Moreover, suppose that we are
given an internal point s of Q, a lower bound & on d(s, Q),
and an upper bound A on A(s,Q). Let 0 < ¢ < 1 be
a predetermined performance parameter. We construct in
O(m?*(A/é)%*e™ ") preprocessing time a data structure QDS of
size O((A/8)%e™1). QDS essentially partitions the Euclidean
plane into three disjoint zones R%2 = 9tUQ~ UQ’ such that
(1) 9t C ;

(2) Q- NQ=0; and

(3) Q" is bounded and its area is at most an e-fraction of
the area of Q.

Given a query point p € R?, QDS answers in constant time
whether p is in QF, O™, or Q.

In Section 4.1 we describe the construction of QDS. In Sec-
tion 4.2 we explain how the reception zones and the SINR
diagram fall into the above framework and establish Theo-
rem 3.

3Unlike the convexity proof which holds for any 3 > 1, the
analysis presented in the current section is only suitable for 8
being a constant strictly greater than 1. In fact, when g = 1,
the fatness parameter is not necessarily defined (think of a
trivial network).



4.1 The construction of qps

In this section we describe the construction of QDS. Let
~v be a positive real to be determined later on. The data
structure QDS is based upon imposing a ~-spaced grid, de-
noted by G-, on the Euclidean plane. The grid is aligned
so that the point s is a grid vertex. The Euclidean plane is
partitioned to grid cells with respect to G, in the natural
manner, where ties are broken such that each cell contains
all points on its south edge except its south east corner and
all points on its west edge except its north west corner (the
cell does contain its south west corner). Given some cell C,
we define its 9-cell, denoted by #C', as the collection of 3 x 3
cells containing C' and the eight cells surrounding it.

The grid cells will be classified to three types correspond-
ing to the zones QF, @7, and Q": cells of type TT are fully
contained in Q; cells of type T~ do not intersect Q; and
cells of type T7 are suspect of partially overlapping Q, i.e.,
having some points in Q and some points not in Q. A query
on point p € R? is handled merely by computing the cell to
which p belongs and returning its type. Our analysis relies
on bounding the number of T cells. ~

By definition, the zone Q contains a ball of radius § and it
is contained in a ball of radius A, both centered at s. Clearly,
the area of Q is lower bounded by the area of any ball it
contains. Since Q is convex, it follows that its perimeter is
upper bounded by the perimeter of any ball that contains
it. Therefore the zone Q satisfies

area(Q) > n6°> and per(Q) < 27A . (3)

We will soon present an iterative process, referred to as the
Boundary Reconstruction Process (BRP), which identifies
the T cells. The union of the T cells form the zone Q° that
contains Q’s boundary 9Q = {(z,y) € R* | Q(z,y) = 0}. In
fact, the zone Q° is isomorphic to a ring and in particular,
it partitions R2 — Q7 to a zone enclosed by Q7 and a zone
outside Q°. The cells in the former zone (respectively, latter
zone) are subsequently classified as T cells (resp., T~ cells).
We shall conclude by bounding the area of Q°, showing that
it is at most an e-fraction of the area of Q.

The main ingredient of BRP is a procedure referred to as
the segment test. On input segment o (which may be open or
closed in each endpoint), the segment test returns the num-
ber of distinct intersection points of Q and o. (Since Q is
convex, this number is either 0, 1, or 2.) The segment test
is implemented to run in time O(mz) by employing Sturm’s
condition of the projection of the polynomial Q(z,y) on o
and by direct calculations of the SINR function in the end-
points of o. Typically, the segment test will be invoked on
segments consisting of edges of the grid G,.

We now turn to describe BRP. Informally, the process
traverses the boundary of Q in the clockwise direction and
identifies the grid cells that intersect it (with some slack).
Let Cs be the grid cell that contains the point s. (We will
choose the parameter v to ensure that v < 5/\@ so that Cs
and the three other cells that share the vertex s are fully
contained in Q.) BRP begins by identifying the unique cell
C4 north to Cs (C1 and Cs are in the same grid column)
which contains a point of 9Q along its west edge. Note that
all grid vertices between s and the south west corner of C
are in Q, while the north west corner of C'; and all the grid
vertices to its north are not in @. The computation of Cy
is performed by direct calculations of the SINR function at
grid vertices north of s in a binary search fashion, starting

Figure 6: The cell collection C4,...,C,,_1 (dark gray)
on top of the boundary of Q (bold curve). The T’
cells are the union of Ci,...,C,,—1 and the 8 cells
surrounding each one of them (in light gray).

with a grid vertex at distance at most A~ from s, and ending
with a grid vertex at distance at least § from s, so that the
total number of SINR calculations is O(log(A/9)).

Let ¢ denote the (unique) intersection point of 9Q and
the west edge of C;. Consider some continuous (injective)
curve function ¢ : [0,27) — 9Q that traverses 0Q in the
clockwise direction, aligned so that ¢(0) = q. For the sake
of formality, we extend the domain of ¢ to [0, c0) by setting
d(z) = ¢(z — |z/(2m)] - 27) for every z > 2m. Let z1 = 0.
Given the cell Cj_; and the real z;_1 € [0,27), we define
zj = inf{z > z;_1 | ¢(z) ¢ 4C;_1}. (Informally, ¢(z;) is
the first point out of §C;_1 encountered along a clockwise
traversal of 0Q that begins at ¢(z;—-1).)

If z; > 2 (which means that the process have completed
a full encirclement of 9Q), then we fix m = j and BRP is
over. Assume that z; < 2m. If ¢(z;) ¢ C;—1, then the cell
C; is defined to be the cell containing ¢(z;). Otherwise, the
cell Cj is defined to be the cell containing the point ¢(z;+9)
for sufficiently small 6 > 0. BRP then continues, gradually
constructing the collection of T7 cells, consisting of all cells
in the 9-cell of Cj for every 1 < j < m. The choice of cells
Ci,...,Cp_1 is illustrated in Fig. 6.

It should be clarified that from an algorithmic perspective,
we do not explicitly compute the real sequence zi,..., zm,
but rather the cell sequence C1,...,Cn—1. This is done
by O(1) applications of the segment test for every 9-cell
involved in the process. Since 9Q is a closed curve, and since
Q is convex, these applications are sufficient to identify the
grid edges (and vertices) crossed by (or tangent to) 0Q, and
hence to compute the desired cell sequence C1,...,Cpn_1.

Next, we bound the number of T7 cells. In every iteration
of BRP, we introduce at most 9 new T? cells, hence the total
number of T7 cells is at most 9(m — 1). Recall our choice
of reals z1,...,2zm. As ¢(zj—1) lies on the boundary of C;_1
and ¢(z;) lies on the boundary of §C;_1, we conclude that
dist(¢(z;), p(zj—1)) > « for every 1 < j < m. Therefore
in each iteration, at least v units of length are “consumed”
from per(Q). Inequality (3) implies that m < [per(Q)/v] <
[27A /7], thus the number of T” cells is at most 9(m —1) <
187A /7. Since the area of each grid cell is 72, it follows that
the total area of Q° (which is the union of the T? cells) is
smaller than 187A~. In order to guarantee that area(Q’) <



e-area(Q), we employ inequality (3) once more and demand

that 187Ay < emd?. Therefore it is sufficient to fix v = 168525’

which means that the number of T7 cells is O((A/3)%™1).

Let @ be the collection of grid columns with at least one
T? cell. Clearly, |Q| = O((A/$§)%™!). Each column ¥ in
Q contains at most 6 T* cells. Consider some cell C' in y
which is not a T cell. If there is a T" cell to the north of
C and a T’ cell to its south, then C is a TT cell; other-
wise, C' is a T~ cell. It follows that the data structure QDS
can be represented as a vector with one entry per each grid
column in Q (O((A/6)%*¢™ ') entries altogether), where the
entry corresponding to the grid column x € Q stores the T”
cells of x (at most 6 of them). On input point p € R?, we
merely have to compute the grid cell to which p belongs and
(possibly) look up at the relevant entry of QDS.

4.2 Approximate point location queries in the
SINR diagram

In this section we explain the relevance of the construc-
tion presented in Section 4.1 to e-approximate point loca-
tion queries in the SINR diagram and establish Theorem 3.
Consider some UPN (S,1, N, 3), where S = {s0,...,8n—1}
and B > 1 is a constant. Recall that the reception zone
Hi = {(z,y) € R? | Hy(z,y) < 0} for every 0 < i <n — 1,
where H;(z,y) is a 2-variate polynomial of degree at most 2n
that is strictly negative for all internal points (z, y) of H; (see
Section 2). Assuming that the location of s; is not shared by
any other station (if it is, then H; = {s;} and point location
queries are answered trivially), we know that s; is an internal
point of H;. Furthermore, Theorem 1 guarantees that the
reception zone H; is a bounded convex zone and Theorem 5
provides us with a lower bound § on d(s;, H;), and an upper
bound A on A(s;, H;) such that A/6 = O(yv/n).

In fact, we can obtain much tighter bounds on §(s;, H;)
and A(s;, H;). Let r be some positive real and assume that
we are promised that d(s;, H;) = O(r) and that A(s;, H;) =
Q(r). Recall that A(s;, Hi)/d(si, Hi) = O(1), hence both
0(si, Hi) and A(s;, H;) are ©(r). Such a positive real r is
found via an iterative binary-search-like process that directly
computes the values of the SINR function of s; at points to
the, say, north of s;, starting with a point at distance A form
Sis annd~ egding with a point at distance at least § from s;.
Since A/d = O(y/n), it follows that this process is bound
to end within O(logn) iterations. Each iteration takes O(n)
time, thus the improved bounds for §(s;, H;) and A(s;, H;)
are computed in time O(nlogn).

Given a performance parameter 0 < ¢ < 1, we apply the
technique of Section 4.1 to H; and its corresponding polyno-
mial H; with the improved bounds on §(s;, H;) and A(s;, H;)
and construct in time O(n?e™!) a data structure QDS; of size
O(e™') that partitions the Euclidean plane to disjoint zones
R? = H;FUH,; UH! such that (1) H;” C Hy; (2) H; "H; = 0;
and (3) H! is bounded and its area is at most an e-fraction
of H;. Given a query point p € R?, QDS; answers in con-
stant time whether p is in 'Hj', ‘H, , or H. (We construct a
separate data structure QDS; for every 0 < i <n —1.)

Recall that by Observation 1, point p cannot be in H;
unless it is closer to s; than it is to any other station in
S. Thus for such a point p there is no need to query the
data structure QDS; for any j # i. A Voronoi diagram of
linear size for the n stations is constructed in O(nlogn)
preprocessing time, so that given a query point p € R?, we

can identify the closest station s; in time O(logn) and invoke
the appropriate data structure QDS;.

Combining the Voronoi diagram with the data structures
QDS; for all 0 < i < n — 1, we obtain a data structure DS of
size O(ne™'), constructed in O(n®e™!) preprocessing time,
that decides in time O(logn) whether the query point p is
in H;" for some i, in H! for some %, or neither, which means
that p € H~ =/, H; . Theorem 3 follows.
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