
The Free Haven Project:
Distributed Anonymous Storage Service

Seminar: P2P Networks

Michael Janczyk

Albert Ludwigs University Freiburg
Faculty of Applied Sciences

Department of Computer Science
Computer Networks and Telematics

Prof. Schindelhauer

March 1, 2007

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 1 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 2 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 3 / 55



Motivation
Examples for a requirement of an anonymous storage

publish freely and . . .

access to information without fear oft being persecuted

prevent influential parties from silencing its opponents and critics

famous example: napster

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 4 / 55



Motivation
Objectives

anonymous persistent distributed storage

protection against strong adversaries to find or destroy stored data

anonymity – for publishers, readers, servers

persistence – availability of each document for a publisher-specific
lifetime

flexibility – system survives as servers leave and join the network

accountability – reputation system limits server-caused damage

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 5 / 55



Motivation
Design: Entities / Units

document : unit where information is stored
author : entity who initially creates the document
publisher : entity who places the document into the system
reader : entity who retrieves the document
server : entity who provides services required to keep the system

running

ServnetServnet

Publisher /Publisher /
(Author)(Author)

ReaderReader

publishpublish

docdoc

queryquery
docdoc

receive
receive

docdoc

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 6 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 7 / 55



Anonymity
What for . . . ?

protects the system from adversaries

provides ’plausible deniability’ 1 for server

there are different types of anonymity

anonymity of communication channels needed

anonymity for:

document
author
publisher
reader
server

1”little or no evidence of wrongdoing or abuse”
(Source: ”http://en.wikipedia.org/wiki/Plausible deniability, 21.02.07”)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 8 / 55



Anonymity
Different types . . .

author anonymity : adversary cannot link author / document
publisher anonymity : adversary cannot link publisher / document
reader anonymity : adversary cannot link reader / document
server anonymity : adversary cannot link server / document

ServerServer

PublisherPublisher

ReaderReader

DocumentDocument

AuthorAuthor
X X

X

doc1doc1
shareshare

doc1doc1
shareshare

doc1doc1
shareshare

X
doc4doc4
sharesharedoc2doc2

shareshare

doc6doc6
sharesharedoc7doc7

shareshare

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 9 / 55



Anonymity
Different types . . .

document anonymity : server doesn’t know which documents it’s storing
– 1. passive-server : only allowed to look at data it’s stroing

unable to figure out contents of the document
– 2. active-server : communicate and compare data with other servers

can participate in the network as reader
query-anonymity : server cannot determine document it’s serving

– server deniability : weaker form, server knows id. of doc,
but no 3rd party can be sure of

⇒ plausible deniability for servers

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 10 / 55



Anonymity
. . . and Pseudonymity

why? participants need to be able to address each other (→
communication)

pseudonym: attributes of two transactions which can be linked

example for an author-pseudonymous system:

”documents digitally signed by ’publius’ could all be
verified ’belonging to publius’ without anyone coming to
know who ’publius’ is in ’real life’.”

anonymity and pseudonymity protect privacy of user’s location and
true name

anonymity allows no linking at all

pseudonymity allows pseudonym to acquire reputation by linking
→ server reputation

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 11 / 55



Anonymity
Partial . . .

anonymity may be impossible, question: ”is it anonymous enough?”

example: user lives in california and uses high-bandwidth connection

adversary can narrow down to a ”set of suspects”

set has to be large enough → take action? ↔ too many suspects?

if an user signs a document with his true name, is the system still
anonymous?

⇒ ”what is the responsibility of the system?”

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 12 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 13 / 55



Design
Ideas

system consists of the publication system and the communications
channel

publication system acts as a backend for the communications
channel

based on a community of servers: ’servnet’ (client 6= server)

servers host data from other servers in exchange for the opportunity
to store its own data

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 14 / 55



Design
Outline / Functions

1 publication

2 retrieval

3 expiration

4 revocation

5 trading

6 receipts

7 accountability

8 reputation

9 introducers

10 communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 15 / 55



Design
Publication

1 identify server which is willing to store document F

a run server him-, herself
b servers with public interfaces or publically available reply blocks

2 break document F into n shares with IDA 2 (f1, . . . , fn)

3 create key pair (PKdoc , SKdoc) 3

4 for each share build a data segment and sign it with SKdoc

5 save shares into local server’s space (next → trade shares fi )

(steps 2 + 3 can be performed by the publisher, requires trust of the publisher)

2Information Dispersal Algorithm, any i shares are sufficient for recreation
3Public Key, Secret Key, keys for signing the document

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 16 / 55



Design
Publication

ServnetServnet

Initial ServerInitial Server

Publisher /Publisher /
(Author)(Author)

DocumentDocument

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 17 / 55



Design
Publication

ServnetServnet

Initial ServerInitial Server

Publisher /Publisher /
(Author)(Author)

publishpublish
DocumentDocument

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 17 / 55



Design
Publication

ServnetServnet

Initial ServerInitial Server

Publisher /Publisher /
(Author)(Author)

publishpublish
DocumentDocumentShareShare

33

ShareShare
11

ShareShare
22

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 17 / 55



Design
Publication

ServnetServnet

Initial ServerInitial Server

Publisher /Publisher /
(Author)(Author)

tradetrade

trade
trade

publishpublish

ShareShare
11

ShareShare
33

ShareShare
22

trade
trade

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 17 / 55



Design
Publication: Share

Example

<share>

<PKdoc>cec41f889d75697304e89edbdddf243662d8c784</PKdoc>

<sharenum>1</sharenum>

<buddynum>0</buddynum>

<totalshares>100</totalshares>

<sufficientshares>60</sufficientshares>

<expiration>2000-06-11-22:25:24</expiration>

<data>Ascii-armored characters here</data>

<signature>cec41f889d75697304e89edbdddf243662d8c784</signature>

</share>

<expiration> GMT, when the share is free to be deleted

all information up to and including </data> is signed
the value is placed inside the <signature> tags

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 18 / 55



Design
Publication: Create shares

with Rabin’s Information Dispersal Algorithm

each document is split up into k fragments

Rabin’s IDA disperses the k input fragments into n output
fragments (n ≥ k)

to rebuild the original fragments use any subset of i shares
(k ≤ i ≤ n)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 19 / 55



Design
Publication: Create shares

with Rabin’s Information Dispersal Algorithm

each document is split up into k fragments

Rabin’s IDA disperses the k input fragments into n output
fragments (n ≥ k)

to rebuild the original fragments use any subset of i shares
(k ≤ i ≤ n)

Fragment 1Fragment 1

Fragment 2Fragment 2

Fragment 3Fragment 3

Fragment 4Fragment 4

Fragment 1Fragment 1

DocumentDocument

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 19 / 55



Design
Publication: Create shares

with Rabin’s Information Dispersal Algorithm

each document is split up into k fragments

Rabin’s IDA disperses the k input fragments into n output
fragments (n ≥ k)

to rebuild the original fragments use any subset of i shares
(k ≤ i ≤ n)

Fragment 1Fragment 1

Fragment 2Fragment 2

Fragment 3Fragment 3

Fragment 4Fragment 4

Fragment 1Fragment 1

Fragment 4Fragment 4

Fragment 3Fragment 3

Fragment 5Fragment 5

Fragment 6Fragment 6

Fragment 2Fragment 2

Fragment 7Fragment 7

Fragment 1Fragment 1

Fragment 8Fragment 8

CodingCoding
MatrixMatrix

Shares 1-8Shares 1-8

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 19 / 55



Design
Publication: Create shares

with Rabin’s Information Dispersal Algorithm

each document is split up into k fragments

Rabin’s IDA disperses the k input fragments into n output
fragments (n ≥ k)

to rebuild the original fragments use any subset of i shares
(k ≤ i ≤ n)

Fragment 1Fragment 1

Fragment 2Fragment 2

Fragment 3Fragment 3

Fragment 4Fragment 4

Fragment 1Fragment 1

Fragment 4Fragment 4

Fragment 3Fragment 3

Fragment 5Fragment 5

Fragment 6Fragment 6

Fragment 2Fragment 2

Fragment 7Fragment 7

Fragment 1Fragment 1

Fragment 8Fragment 8

CodingCoding
MatrixMatrix

DecodingDecoding
MatrixMatrix

Fragment 1Fragment 1

Fragment 2Fragment 2

Fragment 3Fragment 3

Fragment 4Fragment 4

Fragment 1Fragment 1

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 19 / 55



Design
Publication: Number of shares

k based on compromize between importance and size
high k ⇒ file brittle, unrecovable after a few shares are lost
low k ⇒ indicates large file, since more data is stored in each share

redundancy of r = n
k (robustness parameter)

Fragment 1Fragment 1

Fragment 2Fragment 2

Fragment 3Fragment 3

Fragment 4Fragment 4

Fragment 1Fragment 1

Fragment 4Fragment 4

Fragment 3Fragment 3

Fragment 5Fragment 5

Fragment 2Fragment 2

Fragment 1Fragment 1

CodingCoding
MatrixMatrix ??

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 20 / 55



Design
Publication: Excursus - Secret sharing

Blakley’s scheme, 3 dimensions (k = 3):

a plane symbolizes a share

two shares aren’t sufficient to determine the secret
(enough information to narrow it down to a straight line)

the point at which the three planes intersect represents the secret

Figure: Secret sharing (Blakley’s scheme, 3 dimensions) 4

4
(Source: ”http://en.wikipedia.org/wiki/Secret sharing, 26.02.07”)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 21 / 55



Design
Publication: Excursus - Secret sharing

Blakley’s scheme, 3 dimensions (k = 3):

a plane symbolizes a share

two shares aren’t sufficient to determine the secret
(enough information to narrow it down to a straight line)

the point at which the three planes intersect represents the secret

Figure: Secret sharing (Blakley’s scheme, 3 dimensions) 4

4
(Source: ”http://en.wikipedia.org/wiki/Secret sharing, 26.02.07”)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 21 / 55



Design
Publication: Excursus - Secret sharing

Blakley’s scheme, 3 dimensions (k = 3):

a plane symbolizes a share

two shares aren’t sufficient to determine the secret
(enough information to narrow it down to a straight line)

the point at which the three planes intersect represents the secret

Figure: Secret sharing (Blakley’s scheme, 3 dimensions) 4

4
(Source: ”http://en.wikipedia.org/wiki/Secret sharing, 26.02.07”)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 21 / 55



Design
Retrieval

document is indexed H(PKdoc)
1 reader generates keypair (PKclient , SKclient) and an one-time remailer

reply block 5 and sends it to a server (UI or reply block)
2 this server broadcasts (′request ′, H(PKdoc), PKclient , reply block)
3 when one server finds index H(PKdoc)
4 it encrypts the share PKclient(fi ) and sends it through the remailer
5 when the reader receives enough shares fi (≥ k), the document can

be recreated

ServnetServnet

Initial ServerInitial Server

ReaderReader

docdoc
??

5routing instructions, anonymous communication → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 22 / 55



Design
Retrieval

document is indexed H(PKdoc)
1 reader generates keypair (PKclient , SKclient) and an one-time remailer

reply block 5 and sends it to a server (UI or reply block)
2 this server broadcasts (′request ′, H(PKdoc), PKclient , reply block)
3 when one server finds index H(PKdoc)
4 it encrypts the share PKclient(fi ) and sends it through the remailer
5 when the reader receives enough shares fi (≥ k), the document can

be recreated

ServnetServnet

Initial ServerInitial Server

ReaderReader

queryquery

docdoc
??

5routing instructions, anonymous communication → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 22 / 55



Design
Retrieval

document is indexed H(PKdoc)
1 reader generates keypair (PKclient , SKclient) and an one-time remailer

reply block 5 and sends it to a server (UI or reply block)
2 this server broadcasts (′request ′, H(PKdoc), PKclient , reply block)
3 when one server finds index H(PKdoc)
4 it encrypts the share PKclient(fi ) and sends it through the remailer
5 when the reader receives enough shares fi (≥ k), the document can

be recreated

ServnetServnet

Initial ServerInitial Server

ReaderReader

queryquery

docdoc
??

broadcastbroadcast

5routing instructions, anonymous communication → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 22 / 55



Design
Retrieval

document is indexed H(PKdoc)
1 reader generates keypair (PKclient , SKclient) and an one-time remailer

reply block 5 and sends it to a server (UI or reply block)
2 this server broadcasts (′request ′, H(PKdoc), PKclient , reply block)
3 when one server finds index H(PKdoc)
4 it encrypts the share PKclient(fi ) and sends it through the remailer
5 when the reader receives enough shares fi (≥ k), the document can

be recreated

ServnetServnet

Initial ServerInitial Server

ReaderReader

queryquery

docdoc
??

broadcastbroadcast

5routing instructions, anonymous communication → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 22 / 55



Design
Retrieval

document is indexed H(PKdoc)
1 reader generates keypair (PKclient , SKclient) and an one-time remailer

reply block 5 and sends it to a server (UI or reply block)
2 this server broadcasts (′request ′, H(PKdoc), PKclient , reply block)
3 when one server finds index H(PKdoc)
4 it encrypts the share PKclient(fi ) and sends it through the remailer
5 when the reader receives enough shares fi (≥ k), the document can

be recreated

ServnetServnet

Initial ServerInitial Server

ReaderReader

queryquery

docdoc
??

broadcastbroadcast
share2share2

share4share4

share8share8

share1share1

5routing instructions, anonymous communication → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 22 / 55



Design
Retrieval

document is indexed H(PKdoc)
1 reader generates keypair (PKclient , SKclient) and an one-time remailer

reply block 5 and sends it to a server (UI or reply block)
2 this server broadcasts (′request ′, H(PKdoc), PKclient , reply block)
3 when one server finds index H(PKdoc)
4 it encrypts the share PKclient(fi ) and sends it through the remailer
5 when the reader receives enough shares fi (≥ k), the document can

be recreated

ServnetServnet

Initial ServerInitial Server

ReaderReader

queryquery

docdoc
??

broadcastbroadcast
share2share2

share4share4

share8share8

share1share1

DocumentDocument

5routing instructions, anonymous communication → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 22 / 55



Design
Expiration

absolute timestamp (GMT)

indicating time after a server may delete a share with no ill
consequences

Freenet and Mojo Nation favor popular documents (LRU)

prize of share = size ∗ lifetime (→ ’currency’ for trading)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 23 / 55



Design
Revocation

allows updating documents

delete documents with infinite lifetime

one solution:

1 store hash of private value H(RevKey) into each share
2 to revoke broadcast ’RevKey’ to all servers

but new problems:

1 new attacks
2 inconsistency ⇒ revocation may not reach all servers
3 authors may use same value ’RevKey’ for new shares and so ’link’

them
4 presence of a hash in a share assigns ’ownership’ to a share
5 adversary has incentive to find who controls capability to revoke and

force him/her to revoke

⇒ ”revocation is left out of the current design” (Dec 2000)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 24 / 55



Design
Trading: Benefits

1 provide cover for publishing:
if trades are common there is no indication that trader = publisher
⇒ publisher anonymity enhanced

2 let servers join / leave:
trade for short-lived shares and wait them to expire

3 permit longer expiration dates:
long-lasting share would be rare if shares had to be kept several years

4 accomodate ethnical concerns of server operators:
trade away documents you don’t want to be associated with

5 provide moving target:
no static target to attack

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 25 / 55



Design
Trading: How it works

frequency set by server

server (Alice) offers share to another server (Bob) and requests size
and duration of a return share

a ’fair’ trade is based on size ∗ duration (’currency’)
long duration + larger size ⇒ more expensive

4-round handshake:

1+2 shares are being exchanged
3+4 receipts are being sent to each other and to each buddy

with the receipt a server makes a commitment to store a share

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 26 / 55



Design
Trading: 4-round handshake

1 Alice trades Share_A

to Bob

2 Bob trades Share_B

to Alice

3 Alice sends receipt
of Share_B to Bob
and to Share_B’s
buddy

3 Bob sends receipt
of Share_B to its
buddy

Share_A
Share_A

BobBobAliceAlice

CharlieCharlie DavidDavid

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 27 / 55



Design
Trading: 4-round handshake

1 Alice trades Share_A

to Bob

2 Bob trades Share_B

to Alice

3 Alice sends receipt
of Share_B to Bob
and to Share_B’s
buddy

3 Bob sends receipt
of Share_B to its
buddy

Share_A
Share_A

Share
_BShare
_B

BobBobAliceAlice

CharlieCharlie DavidDavid

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 27 / 55



Design
Trading: 4-round handshake

1 Alice trades Share_A

to Bob

2 Bob trades Share_B

to Alice

3 Alice sends receipt
of Share_B to Bob
and to Share_B’s
buddy

3 Bob sends receipt
of Share_B to its
buddy

Share_A
Share_A

Share
_BShare
_B

Receipt(Share_B)

Receipt(Share_B)

BobBobAliceAlice

CharlieCharlie DavidDavid

Receipt(Share_B)

Receipt(Share_B)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 27 / 55



Design
Trading: 4-round handshake

1 Alice trades Share_A

to Bob

2 Bob trades Share_B

to Alice

3 Alice sends receipt
of Share_B to Bob
and to Share_B’s
buddy

3 Bob sends receipt
of Share_B to its
buddy

Receipt(Share_B)

Receipt(Share_B)

Share_A
Share_A

Share
_BShare
_B

Receipt(Share_B)

Receipt(Share_B)

BobBobAliceAlice

CharlieCharlie DavidDavid

Receipt(Share_B)

Receipt(Share_B)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 27 / 55



Design
Trading: 4-round handshake

4 Bob sends receipt
of Share_A to Alice
and to Share_A’s
buddy

4 Alice sends receipt
of Share_A to its
buddy

Receipt(Share_B)

Receipt(Share_B)

Share_A
Share_A

Share
_BShare
_B

Receipt(Share_B)

Receipt(Share_B)

BobBobAliceAlice

CharlieCharlie DavidDavid

Rec
eipt

(Sha
re_A

)

Rec
eipt

(Sha
re_A

)

Receip
t(Shar

e_A)

Receip
t(Shar

e_A)
Receipt(Share_B)

Receipt(Share_B)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 28 / 55



Design
Trading: 4-round handshake

4 Bob sends receipt
of Share_A to Alice
and to Share_A’s
buddy

4 Alice sends receipt
of Share_A to its
buddy

Receipt(Share_B)

Receipt(Share_B)

Share_A
Share_A

Share
_BShare
_B

Receip
t(Shar

e_A)

Receip
t(Shar

e_A)

Receipt(Share_B)

Receipt(Share_B)

BobBobAliceAlice

CharlieCharlie DavidDavid

Rec
eipt

(Sha
re_A

)

Rec
eipt

(Sha
re_A

)

Receip
t(Shar

e_A)

Receip
t(Shar

e_A)
Receipt(Share_B)

Receipt(Share_B)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 28 / 55



Design
Trading: Problems

after the third step Bob could cheat and refuse to send a receipt
(with the receipt a server makes a commitment to store a share)

Receipt(Share_B)

Receipt(Share_B)

Share_A
Share_A

Share
_BShare
_B

Receipt(Share_B)

Receipt(Share_B)

BobBobAliceAlice

CharlieCharlie DavidDavid

Receipt(Share_B)

Receipt(Share_B)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 29 / 55



Design
Trading: Problems

only possibility for Alice is to send a complaint and hope that the
reputation system punishes Bob

servers should keep traded share for a while, just in case the other
server proves untrustworthy

this means an overhead (about 2x)

but provides greatly increased rubustness

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 30 / 55



Design
Receipts

Receipt, signed by server (Alice)

’I am’ : Alice

’I traded to’: Bob

’I gave away’: H(PK_[S_A]), share_num_[S_A], expiration_date_[S_A], size_[S_A]

’I received’ : H(PK_[S_B]), share_num_[S_B], expiration_date_[S_B], size_[S_B]

’Timestamp’ : timestamp_[GMT]

when a server (Alice) complains about another server (Bob) it can
broadcast a complaint including this receipt

receipt gives information if a share should be valid
(expiration_date_[S_A] and document index H(PK_[S_A])))

reputation system computes gravity of this misbehaviour

receipt proves half of the transaction

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 31 / 55



Design
Accountability

’buddy system’ (pairs of buddies)

each share maintains information about the other share

if a share moves, it notifies its buddy

periodically querying for buddies ⇒ still alive? ⇒ report anomalities

during a trade two receipts are sent to each buddy

if buddy was traded away during that, the receipts should be
forwarded 6

receipts, and so forwarding address, is kept until expiration date of
the document

share spawning when buddy disappears?
Free Haven: NO
fear of ”exponential population explosion of shares”

6latency can be hours (days) → Communication
Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 32 / 55



Design
Accountability: Forwarding

ShareShare
Receipt
Receipt

BobBobAliceAlice CharlieCharlie DavidDavid

Receipt
Receipt

Buddy-ShareBuddy-Share

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 33 / 55



Design
Accountability: Forwarding

ShareShare
Receipt
Receipt

BobBobAliceAlice CharlieCharlie DavidDavid

Receipt
Receipt Buddy-Share

Buddy-Share

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 33 / 55



Design
Accountability: Forwarding

Receipt
Receipt

ShareShare
Receipt
Receipt

BobBobAliceAlice CharlieCharlie DavidDavid

Receipt
Receipt Buddy-Share

Buddy-Share

forwardforward

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 33 / 55



Design
Accountability

Example

// share with buddy

<share>

<PKdoc>cec41f889d75697304e89edbdddf243662d8c784</PKdoc>

<sharenum>1</sharenum> // buddy-

<buddynum>0</buddynum> // pairs

<totalshares>100</totalshares>

<sufficientshares>60</sufficientshares>

...

</share>

-------------------------------------------------------------------------------

// receipt with forwarding address

’I am’ : Alice

’I traded to’: Bob // forwarding address

’I gave away’: H(PK_[S_A]), share_num_[S_A], expiration_date_[S_A], size_[S_A]

’I received’ : H(PK_[S_B]), share_num_[S_B], expiration_date_[S_B], size_[S_B]

’Timestamp’ : timestamp_[GMT]

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 34 / 55



Design
Reputation

create accountability

each server should keep track of servers it knows:

reputation: belief that a server will obey the protocol
credibility: belief that utterances of a server are valuable
confidence rating: represents the ’stiffness’ of the two values

a server broadcasts referrals

after a completing a trade
when buddies are lost
when reputation / credibility change substantially

difficult in a system commited to anonymity

there are many attacks

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 35 / 55



Design
Introducers

servers with high reputation

add new servers to the network and remove inactive ones from the
network

at the beginning a new server has no reputation
⇒ no server wants to trade
⇒ offer storage space to the network and make one-way trades

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 36 / 55



Design
Communication: Required operations

the design specifification leads to following required operations:

anonymously send a message to a node

anonymous broadcast

pseudonymously name a node within the network

add nodes to the communications channel, and . . .

remove nodes from the channel without impacting functionality

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 37 / 55



Design
Communication: Desired goals

low latency to provide timely message transmission

delivery robustness for messages, messages are reliably transmitted

routing robustness between any two parties:
loss of nodes should not imply loss of anonymous communicatation

resistant to attack

decentralized, to maintain effciency, security, and reliability

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 38 / 55



Design
Communication

Free Haven will use existing anonymous communication modules

one solution is to use remailers as communication channel
Example Remailer

the first implementation was intended to use Cypherpunk(s) and
Mixmaster remailers as anonymous channel (Dec 2000)

a new remailer Mixminion combines Cypherpunk and Mixmaster

but all remailers have a high latency ⇒ up to hours (days)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 39 / 55



Design
Communication: How could it work

the entities communicate via addresses inside remailer reply blocks

a remailer reply block is a collection of encrypted routing instructions
a bodyless email, addressed to the server itself Example Onion Routing

each server has a public key and one (or more) reply blocks

these provide secure, authenticated, pseudonymous communication

every server in the servnet has a database with the public keys and
reply blocks of the other servers on the network

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 40 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 41 / 55



Future work

low-latency pseudonymous channel:
current channels which support pseudonyms have high latency

accountability and reputation:
extremely difficult to reason about accountability, especially ’buddy
system’
an ’anonymous system reputation algebra’ for formally reasoning to
verify trust protocols

modelling and metrics:
a mathematical model of anonymous storage would allow to test
and run simulations

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 42 / 55



Future Work

formal definition of anonymity

usability requirements and interface

efficiency:
”the efficiency and perceived benefit of the system is more
important to an end user than its anonymity properties”

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 43 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 44 / 55



Conclusion

project was never realized (27.02.07)

freehaven.net last changed December 1st, 2004

latest news from Aug 15, 2002:
”We’re not updating this news anymore. :)” 7

but different other projects were launched like Tor and Mixminion

7
(Source: ”http://freehaven.net, 27.02.07”)

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 45 / 55



Conclusion

the current design is unsuitable for wide deployment

if inefficient it will lead to few users
⇒ leads to insufficient anonymity

one solution: join with efficient file sharing systems
answer queries for less popular documents, which would have been
deleted (LRU)

high latency of the communications channel

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 46 / 55



Conclusion
Anonymity

perfect forward anonymity (pf ):
after a given transaction there is nothing new that can help an
adversary

computational anonymity (c):
anonymity cannot be broken with ’reasonable’ computing power

Free Haven Anonymity

(author) publisher reader server document query

((pf ) + (c)) 8 (pf ) + (c) (pf ) + (c) (c) (c) −

Thanks!

8it’s not the goal of the system to provide communication to the publisher,
it’s the choice of the author himself

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 47 / 55



Outline

1 Motivation

2 Anonymity

3 Design

4 Future work

5 Conclusion

6 Appendix: Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 48 / 55



Appendix: Communication
Remailer

anonymous communication channel (via e-mail)

embedded instructions where to forward message

removes personal information from the header (e-mail address)

there are 4 types of remailers:

1 (Pseudo-)Nym(-ous) remailer (type 0)
2 Cypherpunk remailer (type I)
3 Mixmaster remailer (type II)
4 Mixminion remailer (type III)

RemailerRemailer
From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

From: ---From: ---
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob

Back to Conclusion: Anonymity Back to Communication

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 49 / 55



Appendix: Communication
Nym Server (type 0)

participants need to be able to address each other ⇒ pseudonyms

pseudonym remailer allows bidirectional communication

’real’ e-mail-address is replaced by a pseudonym-address

contemporary nym servers use encrypted remailer chains
⇒ Cypherpunk, Mixmaster

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 50 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob..
..

alice@mail.comalice@mail.com
..
..
..
..
..

..

..
34FB7A@nym.net34FB7A@nym.net

..

..

..

..

..

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob..
..

alice@mail.comalice@mail.com
..
..
..
..
..

..

..
34FB7A@nym.net34FB7A@nym.net

..

..

..

..

..

From: 34FB7A@nym.netFrom: 34FB7A@nym.net
To: bob@mail.comTo: bob@mail.com

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob..
..

alice@mail.comalice@mail.com
..
..
..
..
..

..

..
34FB7A@nym.net34FB7A@nym.net

..

..

..

..

..

From: 34FB7A@nym.netFrom: 34FB7A@nym.net
To: bob@mail.comTo: bob@mail.com

From: bob@mail.comFrom: bob@mail.com
To: 34FB7A@nym.netTo: 34FB7A@nym.net

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob..
..

alice@mail.comalice@mail.com
..
..
..
..
..

..

..
34FB7A@nym.net34FB7A@nym.net

..

..

..

..

..

From: 34FB7A@nym.netFrom: 34FB7A@nym.net
To: bob@mail.comTo: bob@mail.com

From: bob@mail.comFrom: bob@mail.com
To: 34FB7A@nym.netTo: 34FB7A@nym.net

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob..
..

alice@mail.comalice@mail.com
..
..
..

bob@mail.combob@mail.com
..

..

..
34FB7A@nym.net34FB7A@nym.net

..

..

..
75AB39@nym.net75AB39@nym.net

..

From: 34FB7A@nym.netFrom: 34FB7A@nym.net
To: bob@mail.comTo: bob@mail.com

From: bob@mail.comFrom: bob@mail.com
To: 34FB7A@nym.netTo: 34FB7A@nym.net

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Nym Server (type 0)

Nym serverNym server

From: From: alice@mail.comalice@mail.com
To: bob@mail.comTo: bob@mail.com

AliceAlice BobBob..
..

alice@mail.comalice@mail.com
..
..
..

bob@mail.combob@mail.com
..

..

..
34FB7A@nym.net34FB7A@nym.net

..

..

..
75AB39@nym.net75AB39@nym.net

..

From: 34FB7A@nym.netFrom: 34FB7A@nym.net
To: bob@mail.comTo: bob@mail.com

From: bob@mail.comFrom: bob@mail.com
To: 34FB7A@nym.netTo: 34FB7A@nym.net

From: 75AB39@nym.netFrom: 75AB39@nym.net
To: alice@mail.comTo: alice@mail.com

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 51 / 55



Appendix: Communication
Cypherpunk Remailer (type I)

Cypherpunk remailer brought new possibilities:
mail can be sent across a chain of remailers

first remailer in the chain knows the sender
the last remailer knows the recipient
and the middle remailers know neither

mail can be ecrypted with PK of remailer, even between hops
add or remove random data to a mail
delay delivery of mail

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 52 / 55



Appendix: Communication
Cypherpunk Remailer (type I)

Example

1 write message
2 add following lines at the beginning:

::

Request-Remailing-To: mail@cypherremailer.net

3 encrypt message with PK of the remailer (optional)

4 if message encrypted add this lines at the beginning:
::

Encrypted PGP

5 repeat steps 1-4 for each hop (optional)

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 53 / 55



Appendix: Communication
Cypherpunk Remailer (type I): Onion Routing

Remailer1Remailer1

AliceAlice BobBob

Remailer3Remailer3Remailer2Remailer2

To: Remailer1To: Remailer1
______________________________________

PK_Remailer1PK_Remailer1
{Encrypted{Encrypted

Data}Data}

To: RemailerTo: Remailer
______________________________________

PK_Remailer2PK_Remailer2
{Encrypted{Encrypted

Data}Data}

To: Remailer3To: Remailer3
______________________________________

PK_Remailer3PK_Remailer3
{Encrypted{Encrypted

Data}Data}

To: BobTo: Bob
______________________________________

PK_BobPK_Bob
{Encrypted{Encrypted

Data}Data}

DataData

composingcomposing

Back to Conclusion: Anonymity Back to Communication: How could it work

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 54 / 55



Appendix: Communication
Mixmaster Remailer (type II)

needs client / server software which uses spacial packet format

all packets are the same length

every message is encrypted

messages are stored in ’pools’

once enough messages are in a ’pool’ the node forwards a message
ramdomly

for reply blocks use Cypherphunk remailer

Back to Conclusion: Anonymity

Michael Janczyk – University of Freiburg The Free Haven Project March 1, 2007 55 / 55


	
	Motivation
	Anonymity
	Design
	Future work
	Conclusion
	Appendix: Communication

