Network Coding in P2P-Systems

Christian Ortolf

Overview

- Introduction
- . Galois fields
- Encoding/Decoding of Files
- . Gain
 - Coupon Collector's problem
- Problems
- . Security
- Other fields where it can be used
- Research in Freiburg

Introduction - History

• 1999 first time used R.W.Yeung and Z. Zhang , "Distributed Source Coding for Satellite Communications"

- 2000 Definition of Network Coding, Max-Flow Min-Cut Theorem *in Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow.*
- 2005 through Avalanche, Network Coding gets into the media, "Network Coding for Large Scale Content Distribution", C. Gkantsidis, P. Rodriguez

Since 2000 more than 200 Papers dealing with Network Coding

Introduction – Canonical Example

 Max-Flow – Min-Cut Theorem

 Max Flow can't be reached here without coding

Galois field – Évariste Galois

 * 25. Oktober 1811 in Bourg-la-Reine

 + 31. Mai 1832 in Paris

Galois field

- Field
- Notation

 GF_p^n additional F_q

- Example: M = {0,1} with + and * defined as:
 + | 0 1
 -+---0 | 0 1
 0 | 0 0
 1 | 1 0
 1 | 0 1
- Construction: Irreducible Polynomes

Galois Field – Example

Encoding of files

From "Network Coding for Large Scale Content Distribution", C. Gkantsidis, P. Rodriguez

Encoding - Example

Decoding of Files

Check if Coefficient vector is Helpful

- . Download up to N Blocks
- . Invert Matrix and Decode

Gain – Solves Coupon Collector's Problem

- Easier Protocol
 - Less Knowledge Exposed
 - Better Inscentive mechanisms possible
- High Chance to finish File if source leaves

Gain

Problems

- Small Blocks make large Coefficient Vectors
 - 512KB blocks on 4GB file with GF(2⁸) makes
 64MB
- . CPU usage
 - Encoding of aBlock
 - Decoding
 - Inverting

O(n) O(n²) O(n³)

Problems - CPU

- . From Anatomy of a P2P Content Distribution system Gkantsidis et al
- Average: 1.4Mbit down 300Kbit/s up

Security

- Usual Hashfunctions don't work
 - Homomorphic Hashfunctions as solution
 - Very slow
 - Cooperative hashing
 - Complex
 - Needs SRCs to protect against DoS
 - Bulk Hashing
 - Secure Randomn Checksums (SRCs)

- Harder to get info from a tapped wire
- Datainjection even without Hashing nearly

Other Fields where it can be used

• In Multicast Networks (example from NC Primer)

- Reduce Cost in WSN / Storage redundancy
- Network Tomography
- P2P SAN

Research in Freiburg - TooFree

TooFree												
File Help												
Create Token Publish hie Download												
Aith-Tutorialdivx.avi X												
FileInfo		1	80	3	A	5	34	7	8	a	10	111
File:				÷~		¥			<u> </u>	-		
X.evi	71	13	41	9	11	17	71	19	9	21	22	23
Presize: 30,40 Pilb Blockstre: 256 KB			0.0	027	4.0	200	+	24		-7-1	24	25
#Blocks: 122	C	<u>v</u>	20	27	10	<u>2a</u>	2		4	10	34	35
RootHash:	36	37	38	39	21	41	35	43	44	11	46	47
4V5BUL4SRBSUH7NFDHFEBD3NDNH5NQ25VED6CVQ		1	1	+	-	-	-	-	-	10	-	
		49	11	1	52	53	54		56	19	56	21
	21	5	75	8	44	65	52	53	8	69	22	71
Current State	72	141	0	75	47	22	60	14.4	00	26	46	02
DecodedBlocks: 0	<u> </u>		P .	4 × ×	17 C	20	0a	.	00	<u> </u>	40	00
Downloaded Blocks: 78	11	72	8	8	43	83	47	91	38	9	54	37
RuppingTrapsfers: 1	07	40	1.7	07	1.0/	ARE.	1.00	07	00	1.0	-7-	7.5
CCs: 44	141 A	49	47	21	100	35	100	$\leq r$	80	13	10	No 1
	3	91	65	71	41	29	71	35	34	39	34	80
pause	- A -	36										
	2	20										
15 94	-	Block				Datio						_
192.168.0.17 Downloaded 40,95 K06(16%) (97.115)a=-19b=124						-78						

Finding collitions for the top large CPI I met

Thank you for your Attention

Questions?