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ABSTRACT
Every peer-to-peer system is based on some overlay network con-
necting its peers. Many of the overlay network concepts proposed in
the scientific community are based on the concept of virtual space.
These designs are usually highly scalable, but they do not guarantee
robustness against adversarial attacks, especially when considering
open peer-to-peer systems. In these systems, determined adver-
saries may start both insider and outsider attacks in order to harm
the overlay network as much as this is possible. We will focus on
insider attacks in which the adversarial peers in the network perform
join-leave attacks, and we will consider outsider attacks in which
an adversary can perform a denial-of-service attack against any of
the honest peers in the network. Strategies have been proposed
that can defend an overlay network against even massive join-leave
attacks, and strategies are also known that can defend an overlay
network against limited denial-of-service attacks. However, none
of these can protect an overlay network against combinations of
these attacks. We illustrate in this paper why it is not easy to design
strategies against these attacks and propose join and leave protocols
for overlay networks based on the concept of virtual space that can
make them provably robust against these attacks without creating
too much overhead.

1. INTRODUCTION
Due to the rise of peer-to-peer systems, dynamic overlay

networks have recently received a lot of attention. An over-
lay network is a logical network formed by its participants
across a wired or wireless domain. In open peer-to-peer sys-
tems, participants may frequently enter and leave the overlay
network. Hence, two operations have to be provided so that
the overlay network can be adjusted to these changes:

• Join(v): peer v joins the system

• Leave(v): peer v leaves the system

A central goal has been to find join and leave operations
that run as efficiently as possible and that maintain a highly
scalable overlay network. However, besides scalability, ro-
bustness is also important since in open environments like the
Internet adversaries may try to start both insider and outsider
attacks on a distributed system.

In this paper, we study the problem of how to protect an
overlay network against a certain combination of insider and
outsider attacks. The insider attacks we will be focusing
on are legal join-leave attacks on the system by adversarial
peers. More specifically, we consider the scenario in which
there are n honest peers and εn adversarial peers in the system
∗Supported by NSF-ANIR 0240551, NSF-CCF 0515080, and
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for some constant ε < 1. The adversary has full control over
its adversarial peers and knows the entire overlay network
at any point in time. It can use this information to decide
in an adaptive manner which of its adversarial peers should
leave the system and join it again from scratch. In this way,
it can design a sequence of rejoin activities by the adversarial
peers in order to harm the overlay network as much as this
is possible. (For example, by degrading its scalability or
isolating honest peers.)

Besides insider attacks, we also allow certain outsider at-
tacks. We consider outsider attacks in which the adversary
can shut down any peer at any point in time by starting a
brute-force denial-of-service attack on it that bypasses the
overlay network. We assume that an honest peer that is
exposed to such an attack will leave the system (in a poten-
tially non-graceful manner) and will rejoin the network from
scratch as soon as the denial-of-service attack on it is over.

Our goal is to design oblivious join and leave operations
that can protect an overlay network against any combination
of insider and outsider attacks within our model, very high
probability. (In the following, “with high probability”, or
short “w.h.p.”, always means a probability of at least 1 −
1/nc, where n is the number of peers in the system and the
constant c can be made arbitrarily large.) That is, the join
and leave operations must not distinguish between the honest
and adversarial peers and, even more, must not maintain any
kind of state in order to protect the overlay network against
these attacks. We will demonstrate that, on a high level,
suitable operations indeed exist, and our hope is that they are
sufficiently light-weight so that they are useful in practice.

In the following, let n be the number of honest peers in the
system and εn for some ε < 1 be the maximum number of
adversarial peers in the system at any time. For simplicity,
we are focusing on peers being placed at points in the [0, 1)-
interval which is, for example, the case in Chord [20], but
our results can also be adapted to other spaces, such as the
[0, 1)2 space used for the dynamic Gabber-Galil graphs [11]
or the [0, 1)d space used by CAN [13]. We are considering
the following game between an adversary and the system.

1.1 Join-leave game
The join-leave game proceeds in rounds. In each round,

the adversary has complete knowledge of the entire system
and can ask whatever peer it likes to leave and join the system
again from scratch (which we will also call a rejoin request
in the following). Rejoin requests of adversarial peers cover
insider attacks and rejoin requests of honest peers cover out-
sider attacks (the adversary performs a DoS-attack on the
honest peer so that it is excluded from the network, but it
rejoins as soon as the attack has ended).



Our goal is to find oblivious join and leave strategies, i.e.,
strategies that have no memory of the history of the system
and that cannot distinguish between the honest and adversar-
ial peers, that assign positions in [0, 1) to the peers so that for
any adversarial strategy above the following two conditions
can be preserved for every interval I ⊆ [0, 1) of size at least
(c log n)/n for a constant c > 0 and any polynomial number
of rounds in n, with high probability:

• Balancing condition: I contains Θ(|I| · n) peers.

• Majority condition: the honest peers in I are in the
majority.

It is not difficult to show that if these conditions are kept,
structured overlay network concepts together with quorum-
based decision rules can be used to wash out adversarial
behavior (e.g., [4]). Certainly, the brute-force strategy of
giving every peer a new random place whenever a peer re-
joins will achieve the stated goal, with high probability, but
this would be a very expensive strategy. The challenge is
to find join and leave operations that need as little random-
ness and as few rearrangements as possible to satisfy the two
conditions. (Notice that generating random bits in a system
with adversarial peers (see, e.g., [3]) as well as rearranging
peers is expensive and should therefore be kept at a mini-
mum.) It turns out that this is not easy. We first review
some prior work (Section 1.2). Then we give a list of ap-
proaches that do not work (Section 1.3), which is followed
by two approaches for which we do not know yet whether
they work (Section 1.4), and finally we present an approach
that does work (Section 1.5). This approach will be analyzed
in Section 2.

1.2 Prior work on robust overlay networks
Solutions against the insider and outsider attacks covered

in this paper have already been found if just one kind of at-
tack is allowed. We will give a quick review of the literature
below. However, none of these strategies work if the adver-
sary can use any combination of these attacks. Hence, a new
strategy is needed.

Outsider attacks
Oblivious outsider attacks on peer-to-peer systems in which
peers are placed at random positions in some virtual space
can be modeled as random faults or churn. Random faults
and churn has been heavily investigated in the peer-to-peer
community (e.g., [1, 9, 14, 15, 20]), and it is known that
certain structured peer-to-peer systems like Chord can tol-
erate any constant fault probability. Much more difficult to
handle are adaptive outsider attacks, and the best current re-
sult is a structured overlay network that can recover from
any sequence of adaptive outsider attacks in which at most
log n many peers can be removed from the system at any
point in time [9]. The basic idea behind this approach is that
the peers perform local load balancing in order to fill any
holes the adversary may have created in the network. This
approach works well if all peers in the network are assumed
to be honest, but it does not work any more if some of the
peers are adversarial. All the adversary would have to do in
this case is to focus on a particular corner of the network and
force all honest peers in it to leave until sufficiently many ad-
versarial peers have accumulated in it. Once the adversarial
peers have gained the majority in this corner, it is not hard to

imagine that they can start serious application-layer attacks
since it will not be possible any more to wash out adversarial
behavior efficiently in a proactive manner.

Insider attacks
There are also some results on join-leave attacks by adversar-
ial peers. People in the peer-to-peer community have been
aware of the danger of these attacks since quite a while [7,
8] and various solutions have been proposed that may help
thwart these attacks in practice [5, 6, 12, 17, 18, 19] but
until recently no mechanism was known that can provably
cope with these attacks without sacrificing the openness of
the system.

The first mechanism that was shown to preserve random-
ness for a polynomial number of adversarial rejoin requests
uses random peer IDs and enforces a limited lifetime on ev-
ery peer in the system, i.e., every peer has to reinject itself
after a certain amount of time steps [2]. However, this leaves
the system in a hyperactive mode that may unnecessarily
consume resources that could be better used for other pur-
poses. Ideally, one would like to use competitive strategies.
That is, the resources consumed by the mixing mechanism
should scale with the join-leave activity of the system. Such
a strategy was first presented for a pebble-shuffling game on
a ring [16]. However, the join rule proposed there cannot be
directly applied to overlay networks based on the concept of
virtual space since it has no control over the distribution of
the peers in the virtual space, i.e., the balancing condition
can be violated.

The first rule that was able to satisfy the balancing and ma-
jority conditions for a polynomial number of rejoin requests
of adversarial peers is the cuckoo rule [4]. We first introduce
some notation, and then we describe this rule.

In the following, a region is an interval of size 1/2r in [0, 1)
for some positive integer r that starts at an integer multiple
of 1/2r. Hence, there are exactly 2r regions of size 1/2r.
A k-region is a region of size (closest from above to) k/n,
and for any point x ∈ [0, 1), the k-region Rk(x) is the unique
k-region containing x. Whenever a peer leaves, it just leaves,
but when it joins, the following rule is used:

Cuckoo rule: If a new peer v wants to join the system, pick
a random x ∈ [0, 1). Place v into x and move all peers in
Rk(x) to points in [0, 1) chosen uniformly and independently
at random (without replacing any further peers).

It was shown [4] that this rule works for arbitrary join-leave
attacks of adversarial peers as long as ε < 1 − 1/k, and this
bound it tight. However, if also honest peers can be forced
to leave, it does not work any more. To see why, focus on
a region R of size (c log n)/n in [0, 1). Ask any peer still in
R to leave until there are no peers left in R. Even if these
peers will immediately rejoin afterwards, the probability that
an application of the cuckoo rule will move at least one
peer back to R is just O(|R|). Hence, on expectation, within
O(log n) departures R will lose all of its peers, which violates
the balancing condition.

1.3 Join and leave operations that do not work
Is it possible to find a proper modification of the cuckoo

rule so that the class of rejoin attacks considered in this paper
can be handled? We will show that several simple variants
of the cuckoo rule do not work.



Cuckoo rule with random peer transposition
We have seen that just using the cuckoo rule alone is not
sufficient. So how about filling the position given up by the
departing peer by a random peer in the system? This does
not work either due to the following attack. Again, focus on
a region R of size (c log n)/n in [0, 1). Ask any honest peer
in R to leave until there are no more honest peers in R. Since
each position of a departing honest peer is filled with an
adversarial peer with constant (or more precisely, ε/(1 + ε))
probability, it just takes a constant number of departures, on
average, to turn a position occupied by an honest peer into
a position occupied by an adversarial peer. Since it is quite
unlikely that R will be affected by O(log n) applications of the
cuckoo rule, it follows that, on expectation, within O(log n)
departures R will only have adversarial peers in it, which
violates the majority condition.

Cuckoo rule with random transposition of k-region
Suppose that whenever a peer departs some k-region R, R
is flipped with some other k-region R′ chosen uniformly at
random in [0, 1), that is, R is moved with all of its peers to
R′ and R′ is moved with all of its peers to R. Also for this
rule the majority condition can easily be violated.

Suppose that for n many rejoin operations, the adversary
picks any adversarial peer p in the system that has at least
one other (adversarial or honest) peer in its k-region to rejoin
the system (if there is no such peer, we would have εn many
k-regions with just one peer, and this peer is adversarial,
which would be perfect for our attack to work). According
to the cuckoo rule, p is moved to a random k-region, and
all peers previously in it are replaced. Hence, initially, p is
alone in this k-region. The probability that none of r further
rejoin operations of the adversary will affect p’s k-region is
approximately (1− k/n)(1+ε)k·r ≈ e−(1+ε)k2r/n since, on ex-
pectation, (1+ε)k peers are replaced in each rejoin operation
and the probability for any of them not be thrown into p’s
k-region is 1 − k/n. If k is a constant then it takes Θ(n)
applications of the rejoin operation, on expectation, until p’s
k-region will be affected by it. Hence, after n many rejoin
operations there will be a constant fraction of k-regions that
just have a single peer, which is adversarial.

Now, the adversary focuses on a particular region R̂ of size
(c log n)/n and asks any honest peer to leave in it until there
are only adversarial peers left in R̂. It takes O(1) departures
of a peer in some k-region of R̂, on expectation, until this is
flipped with a k-region just containing a single, adversarial
peer. Hence, it takes at most O(log n) departures of peers
in R̂, on expectation, until every k-region in R̂ has been
flipped with a k-region just containing a single, adversarial
peer. Since it is unlikely that any of these k-regions will be
affected by the O(log n) applications of the cuckoo rule when
the departed peers rejoin, R̂ will only have adversarial peers
within O(log n) rejoin operations, on expectation, violating
the majority rule. Though we only focused on a constant k,
the attack also works for any non-constant k = O(log n).

1.4 Join and leave operations that might or
might not work

Next we present two strategies for which we do not know
yet whether they would work or not.

Cuckoo rule with random transposition of neighboring
k-region
Suppose that whenever a peer p leaves the system, a k-region
R will be picked uniformly at random in the (c log n)-region
R̂ containing p and R will be flipped with another k-region
chosen uniformly at random in [0, 1). Afterwards, p rejoins
the system using the cuckoo rule.

The intuition behind choosing a random neighboring re-
gion is that this makes it hard for an attacker to focus on a
particular k-region without affecting other k-regions so that
none of the attacks above works any more. Interestingly,
when deviating from the rule above of choosing a neighbor-
ing k-region uniformly at random, attacks are again possible.
For example, if in a (c log n)-region R a larger probability is
given to flipping an underloaded or overloaded k-region in it,
then the adversary can start a subtle attack that can cause the
violation of the balancing rule, even though the rule looks
advantageous for R.

Let us illustrate the attack for the extreme case that always
the most overloaded k-region is picked in a (c log n)-region, if
there are (significantly) overloaded k-regions in this region.
Suppose first that we pick some peer p and perform Θ(n log n)
many rejoin operations with it. In this way, we create at least√

n overloaded k-regions with Θ(log n) many peers each,
w.h.p., which is not difficult to show. Next, we focus on a
fixed (c log n)-region R. We always pick a (c log n)-region
R′ different from R that contains at least one k-region R′′

with Θ(log n) peers. It is not too difficult to show that such
a k-region exists for the number of operations we need the
adversarial strategy to run, w.h.p. Remove a peer in R′.
The probability that R′′ will be moved into R in this case is
(c log n)/n. Hence, within Θ(n) many rejoin requests it is
quite likely that Θ(log n) many k-regions with Θ(log n) peers
each will be moved into R. With constant probability, only
a constant fraction of these k-regions will be moved out of
R within Θ(n) many rejoin operations resulting in Θ(log2 n)
peers in R at the end. This, however, violates the balancing
condition.

When choosing a k-region uniformly at random in a (c log n)-
region, this attack can be prevented. Nevertheless, it seems
to be quite challenging to formally prove that every other at-
tack can also be handled. The basic technical problem seems
to be that k-regions moved into a (c log n)-region R due to a
flip operation carry history with them making it hard to study
the evolution of R. A strategy avoiding this problem is the
following one.

Cuckoo rule with eviction and random transposition of
neighboring k-region
Suppose that whenever a peer p leaves the system, a k-region
R will be picked uniformly at random in the (c log n)-region
R̂ containing p. All peers in R will be moved to new points
chosen uniformly at random in [0, 1), and then R will be
flipped with another k-region chosen uniformly at random
in [0, 1). Afterwards, p rejoins the system using the cuckoo
rule.

When using this strategy, R will not carry any history
any more when moved into another (c log n)-region, which
greatly helps the analysis. Still, there are some technical
difficulties because adversary can create some bias on the
number and type of nodes that are replaced in that way. By
choosing a heavily loaded (c log n)-region, more nodes will



be moved, on expectation, than when using the cuckoo rule.
Also, the adversary can bias the ratio between honest and
adversarial nodes that are replaced. To avoid these prob-
lems, we came up with the following strategy, which can be
analyzed with a reasonable amount of effort.

1.5 Join and leave operations that do work
The join operation works in the same way as the cuckoo

rule. But whenever a peer wants to leave the network, we
use the following leave operation:

Leave(v): If a peer v leaves the system, then a k-region
R is chosen uniformly at random among the k-regions of
Rkc log n(x) for some (sufficiently large) constant c, where x
is the position of v. R is flipped with a k-region R′ chosen
uniformly at random in [0, 1), and then all peers in R (as well
as v) have to rejoin the system from scratch using the cuckoo
rule.

Hence, the departure of a peer may spawn several join
operations. We call this algorithm the cuckoo&flip strategy.
With this strategy the balancing and majority conditions can
be kept, with high probability. More precisely, we will show
the following result.

Theorem 1.1. For any constants ε and k with ε < 1/4−
(2 log k + 1)/k, the cuckoo&flip strategy satisfies the balanc-
ing and majority conditions for any polynomial number of
rejoin requests, with high probability, for any adversarial
strategy within our model.

Hence, as long as ε < 1/4, only a constant factor over-
head has to be paid (on average) compared to standard join
and leave operations without any additional replacements of
peers. The rest of the paper is devoted to the analysis of this
theorem.

2. ANALYSIS OF THE CUCKOO&FLIP
STRATEGY

Our analysis uses the following Chernoff bound for weighted
random variables (e.g., [10]):

Lemma 2.1. Let X1, . . . , Xn be independent random vari-
ables with 0 ≤ Xi ≤ b for all i, let X =

∑n
i=1 Xi and

µ = E[X]. Then it holds for any δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/(2b(1+δ/3))

and for any 0 < δ < 1 that

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/(2b)

In the following, we simply call the peers nodes. Recall that
a region is an interval of size 1/2r in [0, 1) for some positive
integer r that starts at an integer multiple of 1/2r. Let R̂
be any fixed region of size (c log n) · k/n, for some constant
c, for which we want to check the balancing and majority
conditions over polynomial in n many rejoin requests. Thus,
R̂ contains exactly c log n many k-regions. We assume that
the joining of the nodes proceeds in rounds, one round per
join operation (note that the departure of a node may spawn
several join operations, including its own). The age of a
k-region is the difference between the current round and the
last round when it was emptied due to a departure or a join
operation, and the age of R̂ is defined as the sum of the ages

of its k-regions. A node in a k-region R is called new if it
was placed into R when it joined the system, and otherwise
(i.e., it was moved into R due to a join operation of another
node) it is called old.

We assume that before the adversary starts with its rejoin
requests, only the n honest nodes were in the system, and
sufficiently many rejoin requests have been executed on the
honest nodes so that every k-region has been entered by a
new node at least once. Afterwards, the adversary enters with
its εn adversarial nodes one by one, using the cuckoo rule
in each round, and then it starts executing rejoin requests on
the honest and adversarial nodes as it likes. The assumption
of acting on a sufficiently old system significantly simplifies
the proofs since otherwise extra proofs would be necessary
for the start-up behavior of the system.

The next lemma follows directly from the cuckoo&flip rule
because every k-region can have at most one new node at any
time.

Lemma 2.2. At any time, R̂ contains at most c log n new
nodes.

In order to bound the number of old nodes in R̂, we first
have to bound the age of R̂ (Lemma 2.3). Then we bound the
maximum number of nodes in a k-region (Lemma 2.4) and
use this to bound the number of evicted honest and adversarial
nodes in a certain time interval (Lemma 2.5). After that, we
bound the number of old honest and adversarial nodes in R̂
(Lemma 2.6) and use this to prove an upper bound on the
number of honest nodes that the adversary has asked to leave
R̂ (Lemma 2.7). Finally, all insights are collected to prove
Theorem 1.1.

There are two kinds of node departures (i.e., departures of
nodes that are ordered by the adversary to rejoin). External

departures are events in which a node outside of R̂ leaves,
and internal departures are events in which a node inside
of R̂ leaves. Whenever there is an external departure, the
probability that R̂ will get the emptied k-region is equal to
(c log n)k/n, which is equal to the probability of a k-region
in R̂ being hit by a joining node. In both cases, the age of
that k-region in R̂ is 0. Hence, with respect to the age, we
can reduce the effect of external departures in our analysis
to join operations. For internal departures, notice that some
k-region in R̂ switches its position with a k-region chosen
uniformly at random from the entire system. So internal
departures somehow help R̂ in having k-regions of average
age in it. These insights can be used to show the following
lemma.

Lemma 2.3. At any time, R̂ has an age within [(1 −
δ)(c log n)n/(4k), (1 + δ)(c log n)n/k], with high probability,
where δ > 0 is a constant that can be made arbitrarily small
depending on the constant c.

Proof. Let the random variable A denote the average age
of a k-region in the system.

First, we prove an upper bound on E[A]. Consider any
k-region R in the system and let us follow it as it gets flipped
with other k-regions. Let the random variable X be the age
of R. If we ignore the occasions in which R is emptied due
to a departure in its current (c log n)k-region, it holds that
Pr[X = t] = (k/n)(1 − (k/n))t−1, i.e., X is geometrically
distributed with probability p = k/n. Hence, E[X] ≤ n/k,
which implies that E[A] ≤ n/k.



Next, we prove a lower bound on E[A]. Recall that in each
leave operation at least two k-regions get emptied: one k-
region due to the departure of a node in its (k · c log n)-region
and one k-region when the departed node joins again. We
do not consider it an extra round when a k-region is emptied
due to a departure of a node, but when associating it with
the round of the first join event caused by this, there can be
at most two events of k-regions getting emptied in a round.
Under this restriction, the lowest possible value A can get is
if there are exactly two k-regions with the same age for all
ages from 1 to (n/k)/2, which results in A ≥ (n/k)/4. Thus,
also E[A] ≥ (n/k)/4.

Now, focus on the (k · c log n)-region R̂ and let R1, . . . , RC

be its k-regions, C = c log n. Recall the definition of in-
ternal and external departures. For each external departure,
the probability that the emptied k-region is flipped with a
k-region in R̂ is equal to C ·k/n, which is equal to the proba-
bility that a k-region in R̂ is emptied due to a join operation.
Hence, the effect on the age of R̂ for an external departure is
equivalent to a join operation. However, internal departures
are different, so they need a special treatment.

Suppose that all k-regions in the system are numbered
from R′1 to R′n/k. Whenever there is an external departure
that causes a k-region in R̂ to be flipped, we assume that the
two involved k-regions stay where they are and only their
peers are flipped (i.e., the label distribution in [0, 1) stays as
it is). If there is an internal departure, then the k-regions
affected by it flip their labels (in addition to flipping their
peers). Hence, the labels of the k-regions in R̂ only change
when there is an internal departure.

Let us consider now any adversarial strategy that runs for
T many rejoin operations, where T is polynomial in n. In this
case, the adversary can cause at most T internal departures,
which means that it can create at most T different subsets of
k-regions out of {R′1, . . . , R′n/k} in R̂. For an upper bound
on the age of R̂ we need to show that it is very unlikely that
any of these T subsets has an age that is too large at any time
during the adversarial strategy.

Consider some fixed subset S of k-regions. We know from
above that for each of these k-regions it holds for its age X
that Pr[X ≥ t] ≤ (1 − (k/n))t−1 for every t. Even though
the ages of the k-regions slightly depend on each other (since
no more than two can have the same age), it follows from
techniques in the proof of Lemma 2.5 in [4] that the age of
R̂ is at most (1 + δ)(c log n)(n/k), w.h.p., where δ > 0 is a
constant that can be made arbitrarily small depending on the
constant c. This probability can still be kept polynomially
small when multiplying it with T (which is polynomial in n)
to take care of all T subsets S, if c is large enough.

It remains to prove a lower bound for the age of R̂. Con-
sider some fixed subset S of k-regions for R̂. All k-regions
in S that have been in R̂ from the beginning (i.e., the old

k-regions of R̂) have an age X that satisfies Pr[X ≥ t] ≥
(1 − (k/n))2(t−1) for every t since every round can have at
most two events in which a k-region is emptied. For the other
k-regions in S we note that they have been selected uniformly
and independently at random from all k-regions in the system.
For a lower bound on the age of these regions, we can use the
age distribution for the lower bound on E[A]. Let d1 be the
number of old k-regions in R̂ and d2 = c log n−d1 be the num-
ber of young k-regions in R̂. From the proof of Lemma 2.5

in [4] it follows that the total age of the old regions is at least
d1(n/2k)−δ(c log n)(n/k), w.h.p., and from Lemma 2.1 with
b = n/(2k) it follows that the age of the young k-regions in R̂
is at least d2(n/4k)− δ(c log n)(n/k), w.h.p. Hence, the total
age of R̂ is at least (1 − 2δ)(c log n)(n/k)/4, w.h.p., where
δ > 0 is a constant that can be made arbitrarily small depend-
ing on the constant c. Again, this probability can still be kept
polynomially small when multiplying it with T to take care
of all T subsets S, if c is large enough. ut

Since old nodes are only created in join operations, the
following lemma holds.

Lemma 2.4. For any k-region R it holds at any time that
R has at most O(k log n) old nodes, with high probability.

Proof. It is easy to show that every k-region R can have
an age of at most O((n/k) log n), w.h.p. Consider any k-
region R of age T and let Xt be the number of nodes that get
replaced t rounds after R has last been evicted, 1 ≤ t ≤ T .
Since in the join operation a k-region is picked uniformly
at random and the total number of nodes in the system is
(1 + ε)n, E[Xt] = (1 + ε)k no matter how the nodes are
distributed. Moreover, it trivially holds that Xt ≤ (1 + ε)n.
Hence, E[

∑
t Xt] = (1+ε)kT and it follows from the Chernoff

bounds for weighted random variables (Lemma 2.1) that the
probability that

∑
t Xt ≥ c[(1 + ε)T + (1 + ε)n log n] is poly-

nomially small in n if the constant c is large enough. Since
each of these nodes is assigned to a new point uniformly and
independently at random, it follows from standard Chernoff
bounds that the number of nodes in R is at most O(k log n)
w.h.p. ut

Lemma 2.4 allows us to bound the number of honest and
adversarial nodes that are evicted in a certain time interval
(see also [4]).

Lemma 2.5. For a sufficiently large constant γ it holds
for any time interval I of size T = (γ/ε) log3 n that the num-
ber of honest nodes that are evicted in I is within (1±δ)T ·k,
with high probability, and the number of adversarial nodes
that are evicted in I is within (1± δ)T · εk, with high proba-
bility, where δ > 0 can be made arbitrarily small depending
on γ.

Combining Lemmas 2.3 and 2.5, we obtain the following
lemma.

Lemma 2.6. At any time, R̂ has within [(1−δ)(c log n)k/4,
(1+δ)(c log n)k] old honest nodes and within [(1−δ)(c log n)·
εk/4, (1 + δ)(c log n)εk] old adversarial nodes when ignoring

node departures in R̂, w.h.p.

Suppose that we mark each position in a k-region R at
which a node left after R got last emptied. The next lemma
bounds the total number of marked positions in R̂.

Lemma 2.7. At any time, there are at most (2 log k)(c log n)

marked positions in R̂ belonging to honest nodes, with high
probability, where the probability can be made arbitrarily small
depending on the constant c.

Proof. Suppose that R̂ has m marked positions. Then
there must be s many k-regions in it of age at least m/2
each that have at least m/2 marked nodes in them (namely,



the older half of the marked positions), where s needs to be
determined. Suppose that m ≥ (1 + δ)γ(c log n) for some
small constant δ > 0 and sufficiently large constant γ. Then
s ≥ γ(c log n)/(2k), w.h.p., because Lemma 2.6 implies that
s = γ(c log n)/(2k) many k-regions can have at most (1 +
δ)k · s many honest nodes, w.h.p. The probability that there
are s many k-regions in R̂ of age at least m/2 is at most
(

c log n

s

) (
1− s

c log n

)m/2

≤ (2ek/γ)s · e−(s·m)/(2c log n)

= es(ln(2ek/γ)−(1+δ)γ/2)

Hence, if γ = 2 log k and c > k is sufficiently large, then the
probability is polynomially small that such a subset exists. ut

When combining Lemmas 2.2, 2.6 and 2.7, we obtain a
lower bound of (c log n)k/4− (2 log k)(c log n) honest nodes
and an upper bound of (c log n)εk + c log n adversarial nodes
in R̂ in the worst case (when ignoring the (1 + δ) and (1− δ)
factors, which can be brought arbitrarily close to 1). The
majority condition holds as long as

(c log n)k/4− (2 log k)(c log n) > (c log n)εk + c log n

which implies that ε must satisfy ε < 1/4−(2 ln k+1)/k. Due
to the upper and lower bounds in Lemmas 2.6 and 2.7, also
the balancing condition holds, which implies Theorem 1.1.

3. CONCLUSION
In this paper we presented oblivious join and leave oper-

ations that can protect an overlay network against any se-
quence of rejoin requests. The operations only create a con-
stant factor overhead, on expectation, with respect to the ran-
domness and the number of peer movements needed in stan-
dard join and leave operations without any additional peer
movements besides the joining and leaving peer. Still, our
operations look involved, so it would be interesting whether
one of the operations for which we do not know yet whether
they work can also be shown to be robust against adversar-
ial join and leave behavior. Also, it would be interesting to
find out to which extent join and leave events can happen
concurrently so that it is still possible to design protocols for
scalable and robust overlay networks.
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