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Abstract: There are many wonderful protocols in cryptography which are still wait-
ing for their realization. Here we consider efficient solutions for secure electronic card
games. Our contribution seems to be the first known practical implementation that
requires no trusted third-party and simultaneously keeps the players’ strategies confi-
dential. The provided open source library LibTMCG can be used for creating secure
peer-to-peer games and furthermore for some unusual applications, e.g., secure multi-
party computation or simple electronic voting schemes.
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1 Introduction

Electronic gambling is fascinating for a large community of players. With the availability
of fast communication networks a question related to cryptography has been raised: Is it
possible to play a fair card game over a network without the need for a trusted third-party?

The first answer was given by Shamir, Rivest, and Adleman [SRA79]. They have shown
that a complete solution is impossible in an information theoretic sense. Fortunately,
they also developed a protocol for dealing cards which works under realistic computa-
tional assumptions. This protocol was found to be insecure by Lipton [Li81] and Cop-
persmith [Co85], because it leaks partial information about the cards. Goldwasser and
Micali [GMS81] used probabilistic encryption to solve this issue. However, an important
drawback still remained: In order to detect a cheating player it was necessary to disclose all
secrets at the end of each game. The early solutions only covered the classical two player
scenario while later proposals appeared for three or more parties [BF83, Yu85]. Nowadays
an interesting direction is the design of dropout-tolerant protocols [KKO97, CSDO05].

In card games like Poker it is essential to keep the players’ strategies confidential. The first
solution for this problem was the zero-knowledge protocol suite by Crépeau [Cr87]. But
it turned out that an implementation [Ed94] of the original scheme was not at all practical.



Few years later Schindelhauer [Sc98] introduced a more general toolbox which extents
the previous work of Crépeau. Roughly speaking, the type of a card is shared among all
participating players through bitwise representation by quadratic (non-)residues. Thus the
security relies on the well-known Quadratic Residuosity Assumption (QRA). The correct-
ness of the performed operations is assured by interactive zero-knowledge proofs. Unfor-
tunately, the size of the card representation grows linearly in the number of players and
logarithmically in the number of different types.

Recently Barnett and Smart [BS03] have proposed a very efficient solution which relies
on homomorphic encryption. They describe the abstract concept of a cryptographic prim-
itive denoted as Verifiable k-out-of-k Threshold Masking Function and give two possible
instantiations. The security can be based either on the Decisional Diffie-Hellman Assump-
tion (DDH) or on an assumption related to factoring. The correctness of the most opera-
tions is shown by honest-verifier zero-knowledge proofs of knowledge which all have the
special soundness property [CDS94]. Moreover, the card encoding is independent of the
number of players and almost independent of the number of different types.

1.1 Motivation and Related Work

There is not much known about the software and the quality of randomness used by work-
ing Internet casinos [HS97, AT04]. However, almost all online gambling solutions rely
on a “trusted server” which is often operated by the casino company itself. Even if they
make claims about the security of their systems or random-number generators, one cannot
trust such statements due to the lack of physical and third-party auditing. For the future
it is not very likely that the existing Internet casinos will use public verifiable software in
combination with strong cryptography to guarantee a fair play.

Nevertheless, by looking at the growing possibility of a fast network access for individuals
and hence the emerging trend of virtual communities (e.g. Internet gaming) it seems to be
a good idea to eliminate the need for trusted third-parties in such distributed environments.
In fact, one can easily imagine cases where a trusted third-party is not even available. Of
course, we should simultaneously keep in mind that a reasonable level of efficiency is
always required.

Now let us briefly review the related work w.r.t. electronic card games. We are aware of
only a few real-life implementations [Ed94, Pi02] that fulfill all necessary conditions for a
complete solution in the sense of Crépeau [Cr87], i.e. no trusted third-party is needed and
rather than other solutions [CDRO3], the privacy of the players’ strategies has to be pre-
served. Unfortunately, these first trials were not really practical, e.g., the implementation
by Edwards is reported to have taken eight hours to shuffle a deck.



1.2 Contribution and Organization

By incorporating the recently proposed encoding scheme [BS03] we were able to create
an efficient implementation of Schindelhauer’s toolbox. We have applied some straight-
forward optimizations to increase the performance and the practicability. Moreover, the
development is still ongoing and due to the nature of Free Software everybody who likes
can use the written source code in his own projects.

The next section is devoted to the details and precise settings of our contribution—the de-
velopment of the general purpose library LibTMCG. Then we present a working example
for the German card game Skat and discuss its practicability. Finally we mention some
unusual applications and conclude with new directions in the further development.

2 LibTMCG: A Free Library for Secure Electronic Card Games

The aim of this project is the development of a general purpose library for creating secure
card games. The protocols minimize the effect of coalitions and achieve the confidential-
ity of the players’ strategies, i.e. the participants are not required to reveal hidden cards
respectively secret keys to show that they did not cheat. All operations are considered
in the “honest-but-curious” (aka semi-honest) adversary model. That means, the players
follow the protocol properly but they may gather information and share them within a
coalition to obtain an advantage in the game. Hence we are not concerned with robustness
or availability issues which are hard to solve in an asynchronous setting.

We have implemented the main core of Schindelhauer’s toolbox (TMCG), i.e. the im-
portant functionalities like masking, shuffle, pickup, and public disclosure of cards and
stacks, respectively. Some exotic operations are still missing, e.g., the possibility to insert
a card secretly into a stack. The abstract primitive Verifiable k-out-of-k Threshold Mask-
ing Function (VTMF) of Barnett and Smart has been added recently. Our library only
provides the discrete logarithm instantiation for such a VTME, because the corresponding
key generation is easy to realize even in a distributed game environment.

For the sake of completeness we briefly review the two card encodings [Sc98, BS03]:

TMCG: Let Z;, be the set of integers from Z, with a positive Jacobi-Legendre symbol.
QR,,, denotes the set of quadratic residues and NQR,, the set of quadratic non-
residues modulo m. Further we define NQR®, := Z° N NQR,,.

m m
Each player ¢ € {1,...,k} chooses two large prime numbers p;, ¢; for his secret
key. The public key consists of m; = p; - ¢; and an arbitrary element y; € N QR,O,”.

We make additional constraints, namely that p;, g; are safe primes, p; Z 1 (mod 8),
and p; # ¢; (mod 8), to employ the non-interactive zero-knowledge proof by Gen-
naro et al. [GMR98]. The first two stages of this proof show that m; has been created
correctly as product of exactly two different primes. With another straightforward
argument we assure that y; is indeed a quadratic non-residue modulo m;;.



Let M be the number of different types of cards. A single card Z is represented by

21,1 -+ 21, log, M]
Z = :

k1 --- 2k, [logy M

where every z; ; € Zj;, encrypts a shared bit of the card type 7 € [0, M — 1]. As
long as z; ; is randomly and uniformly distributed the corresponding predicate

qr(%wml) T { 1 otherwise

remains unknown (under the Quadratic Residuosity Assumption) except for the ith
player. Only if all k parties agree to reveal these information and hence prove their
correctness (with zero-knowledge proofs) accordingly, then the type 7 can be com-
puted by the term (&5 denotes the exclusive-or)

[log, M k

T= Z 211 @qr(zi,j,mi).
j=1 i=1

Note that 1 is always a quadratic residue. Thus an open card is simply given by the
binary representation by, . . ., briog, a7 Of its type 7 and the corresponding matrix

(™), (1 1), (1 ).

Obviously, qr(z; j,m;) = Oforalli = 2,...,kand j = 1,...,[logy M|. The
(re-)masking operation of a card Z to Z’ is performed element by element by

K2V

Z =25 Te, ~yf mod m;,

where r; ; €Rr Zjni and by 1, ... abQ,(logz M5+ bk71, ceey bk,ﬂogg M| €R {0, 1}
are randomly and uniformly chosen. To keep the type of the former card Z all
masking bits of the first row have to be computed by

k
by = EPbi-
1=2

The quadratic residuosity property of every z{ ; has to be changed randomly and
uniformly, because otherwise it will not hide the permutation of a secret shuffle
(stack of cards). The above (re-)masking operation forms a equivalence relation
between encoded cards. Therefore it is easy to prove the correctness interactively
using the well-known “cut-and-choose” methodology [Ra78].

VTMF (discrete logarithm variant): The & parties choose a finite abelian group G in
which the Decisional Diffie-Hellman Assumption holds. They agree on a element
g € G of sufficient order ¢ and an appropriate message space M C G (possible



types of cards). Further there is the nonce space R = Z, (randomizers) and the
encoded cards C C G x G themselves.

Each player generates a secret key x; €r Z4 and publishes h; = ¢g®¢ along with
the zero-knowledge proof of knowledge PK{(c;) : h; = g®}. The shared public
key is formed from h = Hle h;. Specifically, this procedure sets up a non-robust
threshold cryptosystem [DF90, Pe91] which aims to protect the confidentiality of the
types. We suppose that the discovered flaws [GJKR99] regarding the non-uniform
generation of the shared secret key x = 1 + - - - + x, does not affect the security
of the card encoding.

Again, the main operation is the (re-)masking of cards which is basically a semanti-
cal secure ElGamal encryption [EI85, TY98],i.e. M x R — Cresp. C x R — C:

(m.r) = (=g .cr=h-m)
((e1,¢2),7) +— (f=c1-g",ch=rco-h")
The correctness is shown by a Proof of Equality of Discrete Logarithms [CP93], i.e.

PK{(a) : ¢1 =g* Aca/m =h>}resp. PK{(a) : ¢|/c1 = g* ANchy/ea = h*}.
The verifiable threshold decryption of cards can be performed in an obvious way.

Due to the lack of space the details of the zero-knowledge proofs have been omitted here.
The interested reader is referred to the original literature [Sc98, BS03]. We have increased
the efficiency of our implementation by the following widely-used optimizations.

TMCG: The primes ¢; and p; are chosen to be congruent 3 modulo 4 (Blum integers).

Thus the computation of the modular square roots is feasible with two single expo-
nentiations. Then the Chinese remainder theorem is applied to construct a common
square root modulo 7;. Additionally, a small value can be chosen for y; € NQR;, .

VTMF: In general we use the cyclic group G := QR,, (quadratic residues) of prime order

g, where p is a safe prime and ¢ = (p — 1)/2. The DDH problem is believed to be
hard [Bo98] in G, for all p of reasonable cryptographic size, e.g., £, = 1024 bit.
The choice for this particular subgroup of Z,, was made due to the fact that we can
test membership simply by computing the Legendre symbol in time O((log, p)?).

Further, one can improve some calculations by choosing the generator g as a power
of two. In fact, g = 2° is a quadratic residue modulo p, if p = 7 (mod 8).

VTMEF: Many of the involved modular exponentiations can be calculated very efficiently,

because the bases are always fixed during a game session. We employ simple pre-
computed tables to speed up this operation. There exist more flexible tradeoffs be-
tween memory usage and computation time [LL94], but unfortunately the danger of
a patent violation encumbers their usage in free software projects like ours.

VTMF: The random exponents (masking operation) are shortened to a size of ¢, = 160

bit. Koshiba and Kurosawa [KK04] have shown that under the Discrete Logarithm
with Short Exponent Assumption (DLSE) the DDH problem is not weakened. In
addition the generator has to be shifted to an appropriate size, i.e. g = 9277,



TMCG, VITMF: The commitments for the proof of the secret shuffle are shortened to a
size of /. = 160 bit by a cryptographic hash function (e.g. RIPEMD-160). On
the other hand, the hash function is used again to turn the proofs of knowledge into
non-interactive zero-knowledge proofs (NIZK) using the well-known Fiat-Shamir
heuristic. Hence the soundness still holds in the Random Oracle Model (ROM).

Each of the above mentioned optimizations was considered carefully with respect to timing
attacks [Ko95]. Therefore we loose some of the gained efficiency.

Our implementation is available as open source library [St05a] released under the GNU
General Public License [FSF]. Currently it comprises approximately 7 300 lines of C++
code. The following tables give a short comparison of the computational (Table 1) and
communication complexity (Table 2) of both implemented schemes.

Table 1: Comparison of the computational complexity (LibTMCG implementation)

l Operation [ TMCG i, q; =3 (mod 4) [Sc98] [ VTME discrete logarithm variant [BS03]
Masking of a card = 3k[logy, M |mulm = 2powm(¢,.) + 2mulm
Prover =t - 5k[log, M ]mulm = 2powm(£4) + Smulm
Verifier =t - 3k[log, Mmulm = 2powm(£,) + 2powm(¢,) + 8mulm
Decryption of a card = 2[logy M |mulm = lpowm(Z4) + 2mulm
Prover < [logy M1((4t 4 5)mulm + 2powm(£,,, /2)) = 3powm(£4) + 1mulm
Verifier < [log, M1(2t + 2)mulm = 4powm(£4) + 4mulm
Shuffle of a stack S = |S] - 3k[logy M ]mulm = |S| - (2powm(£,-) + 2mulm)
Prover ~t-|S|-3k[logy M]mulm ~t-|S|- (2powm(£,-) + 2mulm)
Verifier ~ t-|S|-3k[logy M |mulm ~t-|S|- (2powm(f,) + 2mulm)
k: number of players; M : number of types; ¢: security parameter (controls the soundness error probability of the interactive
zero-knowledge proofs); mulm: modular multiplication et al.; powm(¢): modular exponentiation with exponent of size £

Table 2: Comparison of the communication complexity (LibTMCG implementation)

Sizes of proofs and VTME discrete logarithm variant [BS03]

representations

TMCG p;, q; = 3 (mod 4) [Sc98]

Card representation = k[log, M€, =24,

Key generation =21 +n2 +n3)lm =lp+ g+ Lc
Masking of a card =t-k[logy, M| - (24m + 2) =4lq+ L.

Decryption of a card <t-k[logo M] - (5 + 1) =4lp+Llg+Lc+o0(1)

Shuffle of a stack S

-~

=t (lc+1+ |S‘ . (k“ng M1(bm + 1)+
[log, |SI1))

Default cryptographic sizes used in LibTMCG [St05a]: £,, = £, = 1024 bit, £, = £, — 1, £, = £, = 160 bit
Security parameters that control the soundness error probability of the key generation: 177 = 16,172 = n3 = 128

“(Le+1+]S]-(£r+[logy [S]1))

The parameter ¢ bounds the soundness error probability of the interactive zero-knowledge
proofs (by sequential repeating each proof ¢ times). It can be adjusted by the application
to achieve a fine granulated tradeoff between the provided security and the efficiency.

Note that the proof sizes given in Table 2 are for a single verification process between
two parties. If we want to achieve a k-out-of-k security then the total communication
complexity increases by a factor of O(k?). However, at least the computation of the non-
interactive zero-knowledge proofs has to be carried out only once by each prover.



3 SecureSkat: A Cryptographically Secure Card Game

The famous card game Skat [ISPA] is essentially played by three players. The deck con-
sists of M = 32 different cards which are shuffled at the start of each single game. Every
player receives ten private cards. The Skat (remaining two hidden cards of the deck) is
given to the player who succeeds in a preceding bidding phase. He can either open it and
exchange these two cards privately or leave them untouched on the table. Further, this
player proceed alone against a temporarily coalition of the two other participants. The
main part of the game is a battle for tricks. Each player, starting with the winner of the last
trick, discloses successively one of his private cards in accordance with the rules. All in
all, the goal for the single player is to make more than 60 card points by his tricks.

SecureSkat [StO5b] is a peer-to-peer network implementation of Skat. The software em-
ploys the discrete logarithm VTMF instantiation provided by LibTMCG [St05a]. The
negotiation of games and the control during a session is done with a simple ASCII-based
protocol. The corresponding messages are transmitted over an IRC network (Internet Re-
lay Chat [OR93]). Additionally, each player establishes an authenticated private channel
(Blowfish-128 encrypted by default) with his opponents. These channels will be used to
prove the k-out-of-k correctness of the performed card and stack operations. In our adver-
sary model it is not really necessary to encrypt the channel. However, one can think about
less coalition-resistant threshold scenarios where such a behavior is required.

3.1 Discussion

Table 3 shows the communication effort of SecureSkat in comparison with an outdated
revision of our implementation. The card representation in OpenSkat version < 1.9
was based upon the original quadratic residues encoding without any optimization. Con-
sequently, it produces an enormous communication traffic for reasonable values of the
parameter t. Hence the usage was limited to players with a high-speed connection.

This fundamental issue has now been solved due to the discrete logarithm based encoding
of Barnett and Smart. The increased amount of computational work (modular exponentia-
tions instead of computing squares) is often negligible on a modern hardware architecture.
Further, this effort is partially amortized by the independence of k and M.

Table 3: Compressed network traffic on the private channel (for each single game and player)

t Soundness error probability OpenSkat < 1.9 (TMCG) SecureSkat [StOSb] (VTMF)
Assumption(s): QRA Assumption(s): DDH, DLSE, ROM

2 <0.25 = 3 MByte =~ 0.64 MByte

4 < 0.0625 =~ 5 MByte = 0.72 MByte

8 < 0.00390625 =~ 10 MByte =~ 0.8 MByte

16 < 0.00001526 = 20 MByte =~ 1.02 MByte

32 < 23284 -10710 ~ 40 MByte ~ 1.42 MByte

64 <54211 - 1072 ~ 80 MByte ~ 2.18 MByte




On a conventional No-name-PC with an AMD Duron 1.3 GHz processor, running the De-
bian GNU/Linux 3.1 operating system (GNU Compiler Collection 3.3.4 and GNU Mul-
tiple Precision Arithmetic Library 4.1.4), we have made the following measurements for
a single instance of SecureSkat. The key generation required 1150 ms of processor time,
the shuffle of the deck 150 ms, the dealing of the deck 1650 ms, and the public disclosure
of a card 60 ms for the prover and 110 ms for the verifier. The largest amount of time
was spent by the interactive proof for the correctness of the secret shuffle (see Table 4a).
These values do not include the communication time itself. For convenience we have also
listed the required real time of the whole shuffle and dealing phase either over the internal
loopback interface (10) or a regular' DSL connection (ppp0).

Table 4: Measured performance: (a) Proof of the secret shuffle, (b) Shuffle and dealing phase

[ [ t=2 [ t=4 [ t=8 [ t=16 [ t=32 [ t=64 |
(a) ~750ms | ~1500ms | = 3020 ms ~ 6060 ms | =~ 12200 ms | ~ 24180 ms
(b) lo =~ 4 sec = 5 sec =~ 7 sec =~ 11.5 sec =~ 21 sec = 40.5 sec

ppp0 =~ 13 sec =~ 17.5 sec =~ 27.5 sec =~ 47.5 sec =~ 87 sec =~ 169 sec

4 Unusual Applications

With the help of LibTMCG it was possible to realize two other applications. One can
utilize the data representation as cards to obtain working examples for secret voting and
secure multi-party computation. These solutions are not very efficient and satisfy not all
desired properties. However, they show further scenarios for the usage of our library.

Secret Voting: The following scheme is included in SecureSkat [StO5b]: Every partic-
ipant creates a privately masked card (his vote). These cards are stacked and the
result is shuffled by each player. Finally, the stack is disclosed to all participants.

Secure Multi-party Computation: Recall the quite unusual technique for computing ar-
bitrary boolean functions [dB090, NR98] with a deck of cards. We have imple-
mented the AND-protocol by Stiglic [St01], a copy protocol [CK94] for committed
bits, and other helpful tools. They are available in a test program of LibTMCG.

5 Conclusion and Further Development

We have presented an efficient implementation of the Toolbox for Mental Card Games.
The reduced communication complexity was principally due to the new card encoding
scheme of Barnett and Smart. We have gained additional efficiency by some straightfor-
ward optimizations. Our contribution shows that meanwhile even proposals are practical

11024 KBit/sec downstream and 128 KBit/sec upstream



which do not require the disclosure of the players’ strategies. The experience with Se-
cureSkat is quite opposite to the previously stated belief [HS97, CDR03, AS05] about the
infeasibility of such solutions. However, in games with many participating players or large
card decks (e.g. Poker) the currently used techniques may still become very costly.

Finally, we want to mention further improvements in the ongoing development. First, the
abstract notation of the VITMF primitive allows the usage of other communication efficient
encodings, e.g., prime order groups over elliptic curves [Bo98]. Last but not least, we
can replace the expensive proof of the secret shuffle by a more efficient zero-knowledge
argument. Some proposals [Ne01, Gr03, Fu04, Wi05, Gr05] have been recently developed
in the context of electronic voting and of course, they are applicable to electronic card
games as well. Unfortunately, the advanced techniques in this area are covered by patents.

Updating Remark. Our first experiments with the implementation of Groth’s shuffle proto-
col [Gr05] (interactive version) suggest that one can reduce the communication complexity
(cf. Table 2, VTMF instantiation) approximately to (3|S| + 2)¢, + 8¢, + 4t bits at the
soundness error probability of 2~¢. Hence the break-even point of such an advanced shuf-
fle proof is around ¢t = 20 (for |S| = 32 and default security parameters of LibTMCG).
However, a larger amount of savings is achievable by using a smaller subgroup than QR,,.
Regarding the computational complexity the situation is quite similar: The measured pro-
cessor time for the shuffle proof in SecureSkat has been reduced to 1460 ms (cf. Table 4a),
where the security level was fixed at 2789, Concluding, the above results suggest that the
recently proposed shuffle proofs are major improvements for mental poker protocols.

Acknowledgment. The author thanks Andreas Klein, Friedrich Otto, Christian Schin-
delhauer, and the anonymous referees for their valuable comments and discussions.
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